



Statistical Analysis of DNS Abuse in gTLDs (SADAG) Background, Methodology, and Planned Research SIDN and Delft U. of Technology | ICANN 58 | 10 March 2017

- Introduction from ICANN: Background of Study
- Presentation on Methodology and Planned Research from SIDN and Delft University of Technology (TU-Delft)
- Q&A

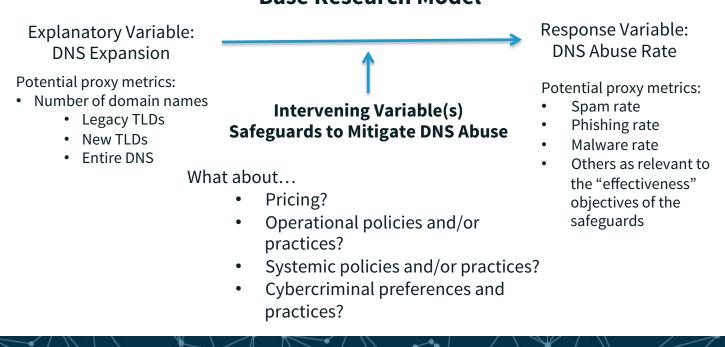


## Study Background

#### <u>2009</u>

#### <u>Mitigating Malicious Conduct: New gTLD Program Explanatory Memorandum</u>

| Question                                                                                                          | Recommendation(s)                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1) How do we ensure that bad actors do not run registries?                                                        | 1. Vet registry operators                                                                                                                                                                                                                               |  |  |
| 2) How do we ensure integrity and utility of registry information?                                                | <ol> <li>Require DNSSEC Deployment</li> <li>Prohibit "wildcarding"</li> <li>Encourage removal of "orphan<br/>glue" records</li> </ol>                                                                                                                   |  |  |
| 3) How do we ensure more focused efforts on combating identified abuse?                                           | <ol> <li>5. Require "Thick" WHOIS records</li> <li>6. Centralize Zone File access</li> <li>7. Document registry- and registrar-<br/>level abuse contacts and policies</li> <li>8. Provide an expedited registry<br/>security request process</li> </ol> |  |  |
| 4) How do we provide an enhanced<br>control framework for TLDs with intrinsic<br>potential for malicious conduct? | <ol> <li>Create a draft framework for a<br/>high security zone verification<br/>program</li> </ol>                                                                                                                                                      |  |  |




## Study Background

#### <u>2016</u>

• <u>New gTLD Program Safeguards Against DNS Abuse: Revised Report</u>

- Research aid to Competition, Consumer Trust, and Choice Review Team
- How to measure effectiveness of safeguards?



#### **Base Research Model**

## Study Background

#### 2016 -2017

• Competition, Consumer Choice, and Trust Review Team

- Mandated by AoC to examine "effectiveness of...safeguards put in place to mitigate issues involved in...the expansion [of the top-level domain space]"
- Required comprehensive descriptive statistics as **baseline measure** of abuse rates in new compared to legacy gTLDs in order to gauge safeguard effectiveness
- $\odot$  Also serves as proxy for "trust", i.e. changes in abuse rate  $\rightarrow$  changes in trust
- CCTRT Draft Report recommends ongoing DNS abuse measurement

#### Study Timeline

- RFP issued August 2016
- SIDN contracted November 2016
- Research began December 2016
- Final report expected June 2017

Big Project! Tight Timeframe! Need Data!



## **Statistical Analysis of DNS Abuse in gTLDs (SADAG)** Methodology and Planned Research Maarten Wullink – SIDN Maciej Korczyński – Delft U. of Technology



## Project

## Statistical Analysis of DNS Abuse in gTLDs (SADAG)

**Consortium**: SIDN and TU Delft

**Requested by**: Competition, Consumer Choice, and Trust Review Team



### Goal

- Comprehensive statistical comparison of rates of DNS abuse in new and legacy gTLDs
  - Spam
  - Phishing
  - Malware
  - Botnet Command-and-Control
- Statistical analysis of potential relationship with abuse drivers
  - DNSSEC
  - Other drivers as identified by future Review Teams



### **Motivation**

- New Generic Top-Level Domain (gTLD) Program enabled hundreds of new generic top-level domains
- Safeguards built into the Program intended to mitigate rates of abusive, malicious, and criminal activity in these new gTLDs



## Current data providers (1)

#### **Domain Blacklists**

- Anti Phishing Working Group
  - Phishing URLs
- StopBadware
  - Malware URLs
- Secure Domain Foundation
  - Malware URLs (Command & Control, EXE, Compromised)
  - Phishing URLs
  - Highly suspect domains
  - Bad Faith domains



## Current data providers (2)

#### **WHOIS data**

- Whois XML API
  - All new gTLDs
  - Subset of legacy gTLDs

#### **Domain data**

- Zone files
  - Per gTLD
  - Per day
  - 3 year period



## gTLD groups

#### Legacy gTLDs

- E.g. .com, .org, .net, asia, .biz etc.

#### New gTLDs

- Part of the New gTLD program
- E.g. amsterdam, .xyz

| Study component                                | # Legacy gTLDs | Source     |
|------------------------------------------------|----------------|------------|
| TLD level aggregation                          | 17             | Zone files |
| Maliciously registered vs. compromised domains | 9              | WHOIS data |
| Registrar aggregation                          | 9              | WHOIS data |



## Data limitations

#### **WHOIS data**

- Collection method
  - No continuous scanning
  - Might be missing short-lived domains



## More Data Requested!

- Abuse feeds
  - Phishing
  - Malware
  - Botnet C&C
  - Spam
- Uptimes





- Concentration of malicious content:
  - Number of unique domains
    - E.g. malicious.com



- Concentration of malicious content:
  - Number of unique domains
    - E.g. malicious.com
  - Number of FQDNs
    - E.g. 123.malicious.com, 456.malicious.com,
      789.malicious.com, (...)



- Concentration of malicious content:
  - Number of unique domains
    - E.g. malicious.com
  - Number of FQDNs
    - E.g. 123.malicious.com, 456.malicious.com, 789.malicious.com, (...)
  - Number of URLs
    - E.g. malicious.com/wp-content/file.php, malicious.com/ wp-content/gate.php, (...)



| STOP BADWARE (SITES)           | F.I.R.E. (COMPOSITE)                  | PHISHTANK                           |
|--------------------------------|---------------------------------------|-------------------------------------|
| Planet.com (AS21844)           | ThePlanet.com (AS21844)               | NJ INTL INTERNET EXCHANGE (AS16812  |
| IANET BACKBONE (AS14035)       | PAH Inc GoDaddy.com (AS26496)         | MetroRED Telecom Services (AS13591) |
| Inc GoDaddy.com (AS26496)      | OVH - OVH (AS16276)                   | RAPIDSWITCH-AS (AS29131)            |
|                                | BLUEHOST-AS (AS11798)                 | CENTROHOST-AS (AS41126)             |
| m Inc. (AS6151)                | IPNAP- GigeNET (AS23522)              | ThePlanet.com (AS21844)             |
| gle Inc. (AS15169)             | EcomD-Coloquest/GigeNet (AS32181)     | iWeb Technologies Inc. (AS32613)    |
| ayer Technologies (AS36351)    | GNAXNET - Global Net Access (AS3595)  | Softlayer Technologies (AS36351)    |
| ent Co/PSI (AS174)             | iWeb Technologies Inc (AS32613)       | OVH - OVH (AS16276)                 |
| ET Beijing (AS17431)           | Softlayer Technologies (AS36351)      | Limestone Networks Inc (AS46475)    |
| rican Internet Svcs (AS6130)   | Bizland-SD - Endurance Intl (AS29873) | SOVAM-AS Golden Telecom (AS3216)    |
| <<>>                           | <>>                                   | <>>                                 |
| ARBOR TOP ASN THREATS          | EMERGING THREATS COMPROMISED IPS      | EMERGING THREATS RBN                |
| ITL INTERNET XCHANGE (AS16812) | CHINA TELECOM (AS4134)                | Softlayer Technologies (AS36351)    |
| -AP (AS4847)                   | Korea Telecom (AS4766)                | ThePlanet.com (AS21844)             |
| IANET BACKBONE (AS14035)       | Deutsche Telekom (AS3320)             | CHINA TELECOM (AS4134)              |
| Source: http://krebso          | nsecurity.com/2010/03/naming-a        | and-shaming-bad-isps                |
| JMBUS-NAP (AS10297)            | Telecom Sao Paolo (AS27699)           | Leaseweb (AS16265)                  |
| ayer Technologies (AS36351)    | China Network Comm. (AS4837)          | HETZNER ONLINE (AS24940)            |
| iapl (AS16138)                 | HANARO Telecom (AS9318)               | NJIX (AS19318)                      |
| T (AS3462)                     | National Internet Backbone (AS9829)   | Layered Tech (AS22576)              |
| ZON (AS14618)                  | CHINANET-BJ-AS-169 (AS4808)           | OVH - OVH (AS16276)                 |

### Size matters!





### Size estimates

- Size of a TLD can be used as an explanatory factor for the concentrations of abused domains
- Size of a TLD could be interpreted as the "attack surface" size for cybercriminals.
- Number of 2<sup>nd</sup>-level domains registered in each gTLD (zone files)
- Limitation: There is a large portion of domains in new gTLDs with NS records that do not resolve yet
  - Solution: active measurement to determine domains in use per gTLD



### Size estimates

- Number of 2<sup>nd</sup>-level domains registered in each registrar (WHOIS data)
- Limitation: single entity can have multiple different names,
   e.g., we found a registrar using 52 distinct name variations
  - Solution: an additional entity resolution step to try to group together the different names of a single registrar (58% reduction)
- Limitation: missing WHOIS data



# Compromised versus maliciously registered domains

#### – Definitions:

- Maliciously registered domain domain registered by a miscreant for malicious purposes
- Compromised domain domain registered by a legitimate user and hacked by a miscreant
- Third party domains domains of legitimate services that tend to be misused by miscreants (e.g. file sharing services, blog post services, URL shortening services)
- For compromised domains, the TLD size could be interpreted as the "attack surface" size for cybercriminals.
- For malicious registrations, the TLD size could serve as a proxy for the "popularity" of the TLD. What makes it popular?



Distinguishing between compromised and maliciously registered domains

- Distinguishing between compromised and maliciously registered domains is critical because they require different mitigation actions by different intermediaries
- Assumption: maliciously registered domains are involved in a criminal activity within a short time after the registration
- Limitation: (lack of) WHOIS data, maliciously registered domains involved in a criminal activity within a longer time after the registration, or delayed blacklisting
  - Solution: more advanced machine learning approach (requires more "features" and the "ground truth" data)



### Future work

- Incorporate more blacklist feeds
- Analyze abuse per:
  - Reseller
  - Privacy / proxy service (if data available)
  - Geographic region
- Analysis of the time-to-live of domain names
  - Requires uptime data
- Inferential analysis of potential relationship with abuse drivers



### Schedule

• Final report available early June 2017



#### **Questions?**



