

Approach

During February/March 2014, a budgetary cost analysis was conducted, comparing the realization of a Synchronized¹ and Federated RDS implementations. A phased approach was used:

- Step 1: Gather baseline requirements for each of the implementation models.
- Step 2: Define and agree key volumetric assumptions provided by ICANN and based largely upon monthly WHOIS query reports supplied by gTLD Registries. Use these assumptions to derive the expected system workload and define a high level baseline solution outline for each of the two implementation models.
- Step 3: Create cost model and perform a budgetary costing of each of the baseline solution outlines.
- Step 4: Formulate findings.

Engagement Starting Points

- Create a budgetary cost estimate for the central "RDS system/provider". Registry Operator costs are not estimated.
- A Managed Service cost model and estimate is created. That is, assume the setup and ongoing operations of a managed RDS service and estimate the related costs.
- For purposes of cost comparison, the solution and costs are based largely on IBM's portfolio (primarily IBM's SoftLayer laasS offering), using third party solution components only where no alternative exists in the IBM portfolio.
- Cost estimations are created for the baseline requirement/solution outline only, not for variants; no detailed cost driver analysis is performed.

¹ For alignment with the EWG's Final Report, this summary refers to the Synchronized RDS (SRDS), the model described in earlier EWG reports as the Aggregated RDS (ARDS).

Core Analysis Scope and Volumetrics

The focus of the cost analysis was the "Core RDS System" as depicted below.

The core use cases to support in each of the models (Synchronized and Federated) were defined.

In addition, key volumetric assumptions were defined:

YEARLY GROWTH RATE	nr of DN records a						
Nr of DN RECORDS, YEARLY UPDATE RATE	100%	nr of DN records u	pdated in a year				
		start yr1 (2015)	start yr2 (2016)	start yr3 (2017)	start yr4 (2018)	start yr5 (2019)	end yr 5 (2020)
	Nr of gTLDs	2000	3000	4000	5000	6000	7000
	growth rate		50%	33%	25%	20%	17%
	December 2013,	start yr1 (2015)	start yr2 (2016)	start yr3 (2017)	start yr4 (2018)	start yr5 (2019)	end yr 5 (2020)
	ICANN input						
NR OF DOMAIN NAMES	151.196.101	184.459.243	225.040.277	274.549.138	334.949.948	408.638.936	498.539.502
NR OF QUERIES/MONTH	9.031.522.529	11.018.457.485	13.442.518.132	16.399.872.121	20.007.843.988	24.409.569.665	29.779.674.992
AVERAGE NR OF QUERIES/SEC	3.484	4.251	5.186	6.327	7.719	9.417	11.489
NR OF QUERIES/PEAK SEC		42.509	51.862	63.271	77.191	94.173	114.891
AVERAGE NR OF QUERIES/HOUR	12.543.781	15.303.413	18.670.164	22.777.600	27.788.672	33.902.180	41.360.660
NR OF QUERIES IN PEAK HOUR	25.087.563	30.606.826	37.340.328	45.555.200	55.577.344	67.804.360	82.721.319
USER VISITS IN PEAK HOUR	16.892.292	20.608.596	25.142.488	30.673.835	37.422.079	45.654.936	55.699.022
CONCURRENT VISITS IN PEAK HOUR	563.076	686.953	838.083	1.022.461	1.247.403	1.521.831	1.856.634
NEW VISITS IN PEAK SEC		28.623	34.920	42.603	51.975	63.410	77.360

% of reverse queries 1,0%

RDS Implementation Models

The following implementation models were derived from the EWG's Initial and Status Update Reports for purposes of cost analysis:

RDS Functional Components

The following component model was created for purposes of cost analysis, incorporating all of the key functions required to implement the RDS system. Standard systems design best practice assumptions were used when costing both the SRDS and FRDS, such as replicating the RDS core system and database across two geographically diverse data centers, with load balancing and fail-over to ensure redundancy and availability, and IPS to deflect DDoS. It should be understood that these functional components APPLY TO BOTH IMPLEMENTATION MODELS.

Functional Components: H TRM IBM GTS Consulting Inter-DC Load Balancing/Routing The Component Model (Functional) defines the key functions **IPS DDoS Mitigation** required to implement the RDS System Intra-DC Load Balancing & SSL Web (HTTP) Server ww Web Application Server (WAS) WAS Admin Node Database (DB) Caching System DC1 DC2 DB Member System Storage Server Systems Monitoring NTP NTP DNS NTP MONITOR ΜΟΝΙΤΟ LDSP Syslog Repository Backup Server BACKUP Internal NW **Backup Storage Server** DB Backup Client System Network Zoning, Firewall/IPS

Internet and DC Connectivity

For example, a two Data Center setup was assumed for the core RDS system in both the SRDS and FRDS model, using an active-active design where each core RDS is capable of handling 50% of peak load. This cost analysis did not include clustering for High Availability within each data center; this could be added without changing the relative costs of the two RDS models.

Cost Estimates (assuming 1% Reverse queries)

The costing summarized below does in no sense constitute an IBM implementation proposal. The costing has been created for the sole purpose of and is only to be used and considered as part of a budgetary costing analysis aimed at comparing two RDS implementation models. Based on the key volumetric inputs, workload requirements, and solution outline given above, the cost per domain name per year for the **Core FRDS and SRDS Systems only** are estimated as:

SRDS Budgetary Cost Estimate	€ 0,0183 average cost/domain/ye									ea	r
8 ,		cost per domain name									
			yr1		yr2		yr3		yr4		yr5
		€	0,041	€ (0,023	€	0,017	€	0,020	€	0,019
FRDS Budgetary Cost Estimate	€	0),0173	s av	verag	e c	ost/d	om	nain/y	ea	1
		COS	st per de	omai	in nam	ie .					
			yr1		yr2		yr3		yr4		yr5
		€	0,041	€	0,018	€	0,017	€	0,021	€	0,017

Differences in cost were further analysed and compared as follows:

FRDS – SRDS Budgetary Cost Estimate Differences

COST MODEL FRDS			RE IN FAL	DIFFERENCE WITH SRDS		
SETUP COSTS		5,9%		10,5%		
INFRASTRUCTURE						
SETUP COSTS	ARCHITECTURE & DESIGN	1,5%	0,2%	15,6%	0,0%	
	PROVISION & CONFIGURE		1,2%		19,2%	
	INFRASTRUCTURE TESTING		0,1%		18,4%	
APPLICATION SETUP						
COSTS	ANALYSIS, DESIGN, CODE, UNIT TEST	1,2%	1,2%	0,0%	0,0%	
TESTING	INTEGRATION TESTING & DEPLOYMENT	1,7%	0,8%	7,8%	0,0%	
	E2E SYSTEM TESTING		0,2%		38,2%	
	PERFORMANCE		0,2%		33,3%	
	SECURITY (ETHICAL HACK)		0,5%		0,0%	
TRANSITION TO BAU	TRANSITION TO BAU	0,6%	0,5%	26,6%	37,7%	
	SERVICE DESK SETUP		0,1%		0,0%	
MANAGEMENT	PROJECT MANAGEMENT	0,9%	0,9%	13,4%	13,4%	

The FRDS model implies a higher computing power requirement (more systems required to handle the envisaged load) in the web and web application server layer.

Due to a higher amount of systems to interface with in an on-line manner when handling queries, the FRDS model is estimated to involve more testing effort

The Public NW cost is lower in the FRDS case due to the IBM SoftLayer NW charging model:

incoming traffic is free; per server 20 TB/month

FRDS – SRDS Budgetary Cost Estimate Differences

					ougoing traine is nee, i.e. you get a total nee					
COST MODEL FRDS	SHARE IN TOTAL		DIFFERENCE WITH SRDS		outgoing volume of #servers x 20 TB per month.					
	100.0%		-5.4%		As the number of servers increases in the PRDS					
RUN COSTS	94,1%		-6,3%	/	model, the total amount of free IB outgoing NVV					
INFRASTRUCTURE					volume/month increases.					
COSTS PUBLIC NW	30,5%	8,1%	-22,4%	-55,9%						
DC NW, GLB, LLB, IPS/DDOS		5,7%		10,7%	The EDRS model implies a higher NW					
HTTP SERVERS		2,2%		236,0%	throughout requirement impact on					
WAS SERVERS		3,7%		218,5%	Firewall and Intrusion Drevention					
DB SERVERS		2,2%		/-52,0%	Firewaii and intrusion Prevention					
STORAGE		6,3%	X	-3,8%	Component.					
BACKUP		1,9%		-19,0%						
GENERIC SYSTEMS		0,3%		0,0%	\ \ The FRDS model implies a higher					
SW LICENCE &					Computing power requirement in the					
MAINTENANCE COSTS DB		13,7%	-17,5%	-59,5%	web and web application server					
WAS		18,8%		234,6%						
BACKUP		0,3%		0,0%						
OPERATIONS AND										
MANAGEMENT COSTS INFRA OPERATIONS & MAINTENANCE	30,9%	19,4%	44,0%	63,6%	The FRDS model implies					
APPLICATION OPERATIONS		/2,6%		20,0%						
APPLICATION MAINTENANCE		1,3%		27,3%						
SERVICE GOVERNANCE		\$,2%		0,0%	storage capacity as less					
SERVICE DESK		2,4%		100,0%	data is stored centrally.					
	//									
					Due to a higher amount of systems to interface					
The DD commute requirement is estimat	with in an on-line manner when handling queries									
The DB compute requirement is estimate	ws	the EDDC model is estimated to involve a higher								
model.					the FRDS model is estimated to involve a higher					
					application operations, support & maintenance					
	release testing workload									

Main Conclusions

With the assumptions used the Core RDS system is slightly less expensive in the Federated RDS (FRDS) model than the Synchronized RDS (SRDS) model.

The FRDS model is highly sensitive to variations in the reverse query load. With a higher amount of reverse queries, the FRDS model becomes substantially more expensive: With a 3% reverse query load instead of a 1% reverse query load, the cost of the FRDS model is estimated to increase close to 35%. This is an important factor of uncertainty and risk associated with the FRDS model. The SRDS model to the contrary is believed to be less sensitive to the amount of reverse queries.

The FDRS model is expected to require higher application operations, support, maintenance and test effort as more interactions with Registry Operators are expected.

In addition, the FRDS model has more impact on the Registry Operators. In the FRDS model, each Registry Operator will have to implement support – under SLA – for online queries, including reverse queries and historical ownership queries (aka WhoWas). For the latter historical data would have to be maintained by the Registry Operators.