
Integration Panel

Variant Rules
REVISION 2015-08-13

1 Overview
Label Generation Rulesets (LGR) define permissible labels, but may also define the
condition under which variant labels may exist and their status (disposition).

Successfully defining variant rules for an LGR is not trivial. A number of considerations and
constraints have to be taken into account. This document describes the basic constraints
and use cases for variant rules in an LGR by using a more readable notation than the XML
format defined in [XML-LGR]. When it comes time to capture the LGR in a formal definition,
the format in this document can be converted to the XML format fairly directly.

From the perspective of a user of the DNS, variants are experienced as variant labels; two
(or more) labels that are functionally “the same” under the conventions of the writing
system used, even though their code point sequences are different. An LGR specification, on
the other hand, defines variant mappings between code points, and only in a secondary
step, derives from these mappings the variant labels. For a discussion of this process as it
relates to the root zone, see [Procedure].

By assigning a “type” to the variant mappings and carefully constructing the derivation of
variant label dispositions from these types, the designer of an LGR can control whether
some or all of the variant labels created from an original label should be available for
allocation (to the original applicant) or whether some or all of these labels should be
blocked instead and remain not allocatable (to anyone).

The choice between these alternatives would be based on the expectations of the users of
the particular zone, and is not the subject of this document. Instead, this document attempts
to point out how to design an LGR to achieve the selected design choice for handling
variants.

2 Variant Relationships
A variant relationship is fundamentally a "same as", in other words, it is an equivalence
relationship. Now the strictest sense of "same as" would be equality, and for equality we
have both symmetry

A = B ⇒ B = A

 and transitivity

A = B and B = C ⇒ A = C

Integration Panel Variant Rules

 2

The variant relationship with its expanded sense of "same as" must really satisfy the same
constraint. Once we say A is the "same as" B, we also assert that B is the “same as” A. In this
document, the symbol “~” means “has a variant relationship with”. Thus we get

 A ~ B ⇒ B ~ A

Likewise, if we make the same claim for B and C (B ~ C) then we do get A ~ C, because if B is
"the same" as both A and C then A must be "the same as" C:

A ~ B and B ~ C ⇒ A ~ C

3 Variant Mappings
So far, we have treated variant relationships as simple “same as” ignoring that each
relationship consists of a pair of reciprocal mappings. In this document, the symbol “”
means “maps to”.

A ~ B ⇒ A  B, B  A

These mappings are not defined between labels, but between code points (or code point
sequences). In the transitive case, given

A ~ B ⇒ A  B, B  A

A ~ C ⇒ A  C, C  A

we also get

B ~ C ⇒ B  C, C  B

for a total of six possible mappings. Conventionally, these are listed in tables in order of the
source code point, like so

 A  B
 A  C
 B  A
 B  C
 C  A
 C  B

As we can see, each of A, B and C can be mapped two ways.

4 Variant Labels
To create a variant label, each code point in the original label is successively replaced by all
variant code points defined by a mapping from the original code point. For a label AAA (the

Integration Panel Variant Rules

 3

letter “A” three times), the variant labels (given the mappings from transitive example
above) would be

AAB
ABA
ABB
BAA
BAB
BBA
BBB
AAC
…
CCC

5 Variant Types and Label Dispositions
Assume we wanted to allow a variant relation between the letters Ö and O, and perhaps also
between Ò and O as well as Ó and O. By transitivity we would have

O ~ Ö ~ Ó ~ Ò

However, we would like to distinguish the case where someone applies for OOO from the
case where someone applies for the label ÖÖÖ. In the former case we would like to allocate
only the label OOO, but in the latter case, perhaps because people have been used to
dropping accents on internet addresses, we would like to also allow the allocation of either
the original label ÖÖÖ or the variant label OOO, or both, but not of any of the other possible
variant labels, like OOÓ or OÖÓ.

How do we make that distinction?

The answer lies in labeling the mapping O  Ö with the type "blocked" and the mapping Ö
 O with the type "allocatable". In this document, the symbol “x” means “maps with type
blocked” and the symbol “a” means “maps with type allocatable”. Thus:

 O x Ö
Ö a O

When we generate all permutations of labels, we use mappings with different types
depending from which code points we start.

In creating an LGR with variants, all variant mappings are always labeled with a type. By
default, these types correspond directly to the dispositions for variant labels, with the most
restrictive type determining the disposition of the variant label. However, as we shall see
later, it is sometimes useful to assign types from a wider array of values than the final
dispositions for the labels and then define explicitly how to derive label dispositions from
them.

Integration Panel Variant Rules

 4

6 Allocatable Variants
If we start with ÖÖÖ, the permutation OOO will have been the result of applying only
mappings with type "a” (allocatable) and by tracking which types were used in generating
the label we know whether we can allocate both the label OOO and the original label ÖÖÖ.

We record the variant types for each of the variant mappings used in creating the
permutation in an ordered list. Such an ordered list of variant types is called a “variant type
list”. In running text it is often enclosed in square brackets. For example [a x -] means the
variant label was derived from a variant mapping with the "a" variant type in the first code
point position, "x" in the second code point position, and that the third position is the
original code point (“-“ means “no variant mapping”).

For our example permutation we get the following variant type list (brackets dropped):

 ÖÖÖ  OOO : a a a

From the variant type list we derive a “variant type set”, denoted by curly braces, that
contains an unordered set of unique variant types in the variant type list. For the variant
type list for the given permutation, [a a a], the variant type set is { a }, which has a single
element “a”.

Deciding to allow the allocation of a variant label then amounts to deriving a disposition for
the variant label from the variant type set created from the variant mappings that were
used to create the label. For example the derivation

 if “all variants” = “a” ⇒ set label disposition to “allocatable”

would allow OOO to be allocated, because the types of all variants mappings used to create
that variant label from ÖÖÖ are “a”.

The “all-variants” condition is tolerant of an extra “-“ in the variant set (unlike the “only-
variants” condition described below). So, had we started with ÖOÖ, OÖÖ or ÖÖO, the variant
set for the permuted variant OOO would have been { a - } because in each case one of the
code points remains the same as the original. The “-” means that because of the absence of a
mapping O  O there is no variant type for the O in each of these labels.

The “all-variants” = “a” condition ignores the “-“, so using the derivation from above, we
find that OOO is an allocatable variant for each of the labels ÖOÖ, OÖÖ or ÖÖO.

7 Blocked variants
Blocked variants are not available to another registrant. They therefore protect the
applicant of the original label from someone else registering a label that is “the same as”
under some user-perceived metric. Blocked variants can be a useful tool even for scripts for
which no allocatable labels are ever defined.

Integration Panel Variant Rules

 5

If we start with OOO, the permutation ÖÖÖ will have been the result of applying only
mappings with type "blocked" and we cannot allocate the label ÖÖÖ, only the original label
OOO. This corresponds to the following derivation:

 if “any variants” = “x” ⇒ set label disposition to “blocked”

To prevent allocating ÖÓO as a variant label for ÖÖÖ we further need to make sure that the
mapping Ö  Ó has been defined with type "blocked" as in

Ö x Ó

so that

ÖÖÖ  ÖÓO: - x a.

Thus the set {x a} contains at least one “x” and satisfies the derivation of a blocked
disposition for ÖÓO.

8 Pure Variant Labels
Now, if we wanted to prevent allocation of ÖOÖ when we start from ÖÖÖ, we would need a
rule disallowing a mix of original code points and variant code points, which is easily
accomplished by use of the "only-variants" qualifier, which requires that the label consist
entirely of variants and all the variants are from the same set of types.

 if “only-variants” = “a” ⇒ set label disposition to “allocatable”

The two code points Ö in ÖOÖ are not arrived at by variant mappings, because the code
points are unchanged and no variant mappings are defined for Ö Ö. So, in our example,
the set of variant mapping types is

 ÖÖÖ  ÖOÖ: - a -

but unlike the “all-variants” condition, “only-variants” requires a variant type list [a a a]”
(no - allowed). By adding a final derivation

 else if “any-variants” = “a” ⇒ set label disposition to “blocked”

and executing that derivation only on any remaining labels, we disallow ÖOÖ when starting
from ÖÖÖ, but still allow OOO.

Derivation conditions are always applied in order, with later derivations only applying to
labels that did not match any earlier conditions, as indicated by the use of “else” in the last
example. In other words, they form a cascade.

Integration Panel Variant Rules

 6

9 Reflexive Variants
But what if we started from ÖOÖ? We would expect OOO to be allocatable, but the variant
type set would be

 ÖOÖ  OOO: a - a

because the O is the original code point. Here is where we use a reflexive mapping, by
realizing that O is “the same as” O, which is normally redundant, but allows us to specify a
disposition on the mapping

 O a O

with that, the variant type list for ÖOÖ  OOO becomes:

 ÖOÖ  OOO: a a a

and the label OOO again passes the derivation condition

 if “only-variants” = “a” ⇒ set label disposition to “allocatable”

as desired. This use of reflexive variants is typical whenever derivations with the “only-
variants” qualifier are used.

10 Limiting Allocatable Variants by Subtyping
As we have seen, the number of variant labels can potentially be large, due to combinatorics.

To recap, in the standard case a code point C can have (up to) two types of variant mappings

C x X
C a A

where a means a variant mapping with type "allocatable", and x means "blocked". By
convention, we name the target code point with the corresponding uppercase letter.

Subtyping is a mechanism that allows us to distinguish among different types of allocatable
variants. For example, we can define three new types: “s”, “t” and “b”. “s” and “t” are
mutually incompatible, but “b” is compatible with either “s” or “t” (in this case, “b” stands
for “both”). With this, a code point C might have (up to) four types of variant mappings

C x X
C s S
C t T
C b B

and explicit reflexive mappings of one of these types

C s C

Integration Panel Variant Rules

 7

C t C
C b C

As before, all mappings must have one and only one type, but each code point may map to
any number of other code points.

We define the compatibility of “b” with “t” or “s” by our choice of derivation conditions as
follows

 if “only-variants” = “s” or “b” ⇒ allocatable
 else if “only-variants” = “t” or “b” ⇒ allocatable
 else if “any-variants” = “s” or “t” or “b” or “x” ⇒ blocked

An original label of four code points

CCCC

may have many variant labels such as this example listed with its corresponding variant
type list:

CCCC XSTB : x s t b

This variant label is blocked because to get from C to B required x. (Because variant
mappings are defined for specific source code points, we need to show the starting label for
each of these examples, not merely the code points in the variant label.) . The variant label

CCCC SSBB : s s b b

is allocatable, because the variant type list contains only allocatable mappings of subtype s
or b, which we have defined as being compatible by our choice of derivations. The actual set
of variant types {s, b} has only two members, but the examples are easier to follow if we list
each type. The label

 CCCC  TTBB : t t b b

is again allocatable, because the variant type set {t, b} contains only allocatable mappings of
the mutually compatible allocatable subtypes t or b. In contrast,

 CCCC  SSTT : s s t t

is not allocatable, because the type set contains incompatible subtypes t and s and thus
would be blocked by the final derivation.

The variant labels

 CCCC  CSBB : c s b b

 CCCC  CTBB : c t b b

Integration Panel Variant Rules

 8

are only allocatable based on the subtype for the C  C mapping, which is denoted here by c
and (depending on what was chosen for the type of the reflexive mapping) could
correspond to s, t, or b.

If it is s, the first of these two labels is allocatable; if it is t, the second of these two labels is
allocatable; if it is b, both labels are allocatable.

So far, the scheme doesn’t seem to have brought any huge reduction in allocatable variant
labels, but that is because we tacitly assumed that C could have all three types of allocatable
variants s, t, and b at the same time.

In a real world example, the types s, t and b are assigned so that each code point C normally
has at most one non-reflexive variant mapping labeled with one of these subtypes, and all
other mappings would be assigned type x (blocked). This holds true for most code points in
existing tables (such as those used in current IDN TLDs), although certain code points have
exceptionally complex variant relations and may have an extra mapping.

11 Allowing Mixed Originals
If the desire is to allow original labels (but not variant labels) that are s/t mixed, then the
scheme needs to be slightly refined to distinguish between reflexive and non-reflexive
variants. In this document, the symbol “r-n” means “a reflexive (identity) mapping of type
‘n’”. The reflexive mappings of the preceding section thus become:

C r-s C
C r-t C
C r-b C

With this convention, and redefining the derivations

 if “only-variants” = “s” or “r-s” or “b” or “r-b” ⇒ allocatable
 else if “only-variants” = “t” or “r-t” or “b” or “r-b” ⇒ allocatable
 else if “any-variants” = “s” or “t” or “b” or “x” ⇒ blocked
 else ⇒ allocatable

any labels that contain only reflexive mappings of otherwise mixed type (in other words,
any mixed original label) now fall through and their disposition is set to “allocatable” in the
final derivation.

12 Handling Out Of Repertoire Variants
At first it may seem counterintuitive to define variants that map to code points not part of
the repertoire. However, for zones for which multiple LGRs are defined, there may be
situations where labels valid under one LGR should be blocked if a label under another LGR
is already delegated. This situation can arise whether or not the repertoires of the affected

Integration Panel Variant Rules

 9

LGRs overlap, and, where repertoires overlap, whether or not the labels are both restricted
to the common subset.

In order to handle this exclusion relation through definition of variants, it is necessary to be
able to specify variant mappings to some code point X that is outside an LGR’s repertoire, R:

C x X : where C ∈ R and X ∉ R

Because of symmetry, it is necessary to also specify the inverse mapping in the LGR:

X x C : where X ∉ R and C ∈ R
This makes X a source of variant mappings and it becomes necessary to identify X as being
outside the repertoire, so that any attempt to apply for a label containing X will lead to a
disposition of “invalid” — just as if X had never been listed in the LGR. The mechanism to do
this, again uses reflexive variants, but with a new type of reflexive mapping of “out-of-
repertoire-var”, shown as “r-o”:

X r-o X

When paired with a suitable derivation, any label containing X is assigned a disposition of
“invalid”, just as if X was any other code point not part of the repertoire. The derivation used
is:
 if “any-variant” = “out-of-repertoire-var” ⇒ invalid

It is inserted ahead of any other derivation of the “any-variant” kind in the chain of
derivations. As a result for any out-of repertoire variants three entries are minimally
required:

C x X : where C ∈ R and X ∉ R
X x C : where X ∉ R and C ∈ R
X r-o X : where X ∉ R

Because no variant label with any code point outside the repertoire could ever be allocated,
the only logical choice for the non-reflexive mappings to out-of-repertoire code points is
“blocked”.

13 Conditional Variants
Variant mappings are based on whether code points are “the same” to the user. In some
writing systems, code points change shape based on where they occur in the word
(positional forms). Some code points have matching shapes in some positions, but not in
others. In such cases, the variant mapping only exists for some possible positions, or more
general, only for some contexts. For example, take a variant relation that only exists at the
end of a label (or in final position):

 final: C  D

Integration Panel Variant Rules

 10

From symmetry, we have that the mapping X  C should also exist only when the code
point X is in final position. (And the same for transitivity). Because shapes differ by position,
when a context is applied to a variant mapping, it is treated independently from the same
mapping in other contexts. For example, the mapping C  X may be “allocatable” in final
position, but “blocked” in any other context (that is when the condition is the opposite of
final, shown here as “!final”):

final: C a D
!final: C bD

Now, the type assigned to the symmetric, or transitive mapping is independent. Let’s
imagine a situation where the transitive case is D a E, that is, all mappings from D to E are
“allocatable“:

final: D a E
!final: D aE

Why not simply D a E? Adding a context makes the variant mapping distinct and it needs
to be accounted for explicitly so that human and machine readers can easily verify
symmetry and transitivity of the variants in the LGR.

For the same reason it is an error to combine a variant mapping with context with a variant
mapping with the same target but without a context, or to define two contexts that may be
satisfied by the same label.1

Finally, for symmetry to work, the context must be such that it is satisfied for both the
original code point in the context of the original label as for the variant code point in the
variant label. Positional contexts satisfy this last condition, but in principle it is possible to
define other kinds of contexts.

It is not necessary to define multiple contexts, such as “final” and “!final”, that together
cover all possible cases. For example, here are two contexts that do not cover all possible
positional contexts:

final: C  D
initial: C D.

14 Corresponding XML Notation
The XML format defined in [XML-LGR] corresponds fairly directly to the notation used in
this document. For example, a variant relation of type “blocked”

1 The former error can be easily detected and rejected by a parser, the latter depends on the
interaction between labels and context rules. It should be reported if detected during label
evaluation, but short of brute force testing could be missed during LGR creation.

Integration Panel Variant Rules

 11

C x X

is expressed as

 <char cp=“nnnn”><var cp=“mmmm” type=“blocked” /></char>

where we assume that nnnn and mmmm are the Unicode code point values for C and X,
respectively. A reflexive mapping always uses the same code point value for <char> and
<var> element, for example

 X r-o X

would correspond to

 <char cp=“nnnn”><var cp=“nnnn” type=“out-of-repertoire-var” /></char>

Multiple <var> elements may be nested inside a single <char> element, but their “cp” values
must be distinct (unless other distinguishing attributes are present that are not discussed
here).

 <char cp=“nnnn”>
 <var cp=“kkkk” type=“allocatable” />
 <var cp=“mmmm” type=“blocked” />
 </char>

A set of conditional variants like

final: C a K
!final: C b K

 would correspond to

 <var cp=“kkkk” when=”final” type=“allocatable” />
 <var cp=“kkkk” not-when=”final” type=“blocked” />

where the string “final” references a name of a context rule. Context rules are defined in
[XML-LGR] and the details of how to create and define them are outside the scope of this
document. If the label matches the context defined in the rule, the variant mapping is valid
and takes part in further processing. Otherwise it is invalid and ignored. Using the “not-
when” attribute inverts the sense of the match. The two attributes are mutually exclusive.

A derivation of a variant label disposition

 if “only-variants” = “s” or “b” ⇒ allocatable

is expressed as

 <action disp=“allocatable” only-variants= “s b” />

Integration Panel Variant Rules

 12

Instead of using “if” and “else if” the <action> elements implicitly form a cascade, where the
first action triggered defines the disposition of the label. The order of action elements is
thus significant.

For the full specification of the XML format see [XML-LGR].

15 References

 [Procedure] Internet Corporation for Assigned Names and Numbers, "Procedure to Develop
and Maintain the Label Generation Rules for the Root Zone in Respect of IDNA
Labels." (Los Angeles, California: ICANN, March, 2013)
http://www.icann.org/en/resources/idn/variant-tlds/draft-lgr-procedure-
20mar13-en.pdf

[XML-LGR] Davies, K. and A. Freytag, "Representing Label Generation Rulesets using XML",
http://tools.ietf.org/html/draft-davies-idntables-07/.Visited 2015-07-18.

http://www.icann.org/en/resources/idn/variant-tlds/draft-lgr-procedure-20mar13-en.pdf�
http://www.icann.org/en/resources/idn/variant-tlds/draft-lgr-procedure-20mar13-en.pdf�
http://tools.ietf.org/html/draft-davies-idntables-07/�

	1 Overview
	2 Variant Relationships
	3 Variant Mappings
	4 Variant Labels
	5 Variant Types and Label Dispositions
	6 Allocatable Variants
	7 Blocked variants
	8 Pure Variant Labels
	9 Reflexive Variants
	10 Limiting Allocatable Variants by Subtyping
	11 Allowing Mixed Originals
	12 Handling Out Of Repertoire Variants
	13 Conditional Variants
	14 Corresponding XML Notation
	15 References

