Root Zone DNSSEC KSK Rollover

David Conrad & Andrei Kolesnikov

ALAC Capacity Building Webinar
13 June 2018
The Basics

- This talk is related to the Domain Name System, in particular, the security extensions made to it

 - DNSSEC – DNS Security Extensions

 - The addition of digital signatures to data, using a hierarchy of asymmetric cryptographic keys to achieve massive scale

 - Two of the cryptographic roles defined for keys
 - Key Signing Key – a key that signs a bundle of other keys
 - Zone Signing Key – a key that is used to sign data
DNSSEC – Signing vs. Validation

- **DNS Security Extensions**
 - Digital signature is the basic element of work

- **Signing**
 - Zone Administrators add digital signatures

- **Validation**
 - Recursive resolvers, stub resolvers check the signatures in a few ways, cryptographic and other (time, authorization, sanity, etc.)

- **Impact of Root Zone DNSSEC KSK rollover**
 - DNSSEC validators (e.g., recursive resolvers run by some ISPs or enterprises) need to prepare, new "root" of trust
The Root Zone DNSSEC KSK is the top most cryptographic key in the DNSSEC validation hierarchy.

- Public portion of the KSK is a configuration parameter in DNS validating revolvers.
- The other "role" is ZSK, zone signing key.
There has been one functional, operational Root Zone DNSSEC KSK
- Called "KSK-2010"
- Since 2010, nothing before that

A new KSK will be put into production later this year
- Call it "KSK-2017"
- An orderly succession for continued smooth operations

Operators of DNSSEC recursive servers may have some work
- As little as review configurations
- As much as install KSK-2017
Rollover of the Root Zone DNSSEC KSK

- There has been one functional, operational Root Zone DNSSEC KSK
 - Called "KSK-2010"
 - Since 2010, nothing before that

- A new KSK will be put into product
 - Call it "KSK-2017"
 - An orderly succession for continued

- Operators of DNSSEC recursive servers may have some work
 - As little as review configurations
 - As much as install KSK-2017
Approach to the KSK Rollover

- The rollover process emerged from plans developed in 2015

- The approach chosen is "slow and steady", taking advantage of existing practices and adhering to *Automated Updates of DNSSEC Trust Anchors*
 - RFC-Editor STD 74, also known as RFC 5011

- Earlier recommendations were for operators to rely on "RFC 5011"
 - But crucial milestones have passed for trusting the new key
 - Still we are still adhering to it for the revocation
 - In the future, we will likely rely on it again
Important Milestones

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of KSK-2017</td>
<td>October 27, 2016</td>
</tr>
<tr>
<td>Production Qualified</td>
<td>February 2, 2017</td>
</tr>
<tr>
<td>Out-of-DNS-band Publication</td>
<td>February 2, 2017, onwards</td>
</tr>
<tr>
<td>Automated Updates Publication</td>
<td>July 11, 2017, onwards</td>
</tr>
<tr>
<td>Sign (Production Use)</td>
<td>October 11, 2017, onwards</td>
</tr>
<tr>
<td>Revoke KSK-2010</td>
<td>January 11, 2018</td>
</tr>
<tr>
<td>Remove KSK-2010</td>
<td>Dates TBD, 2018</td>
</tr>
</tbody>
</table>
Important Milestones - Updated

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of KSK-2017</td>
<td>October 27, 2016</td>
</tr>
<tr>
<td>Production Qualified</td>
<td>February 2, 2017</td>
</tr>
<tr>
<td>Out-of-DNS-band Publication</td>
<td>February 2, 2017, onwards</td>
</tr>
<tr>
<td>Automated Updates Publication</td>
<td>July 11, 2017, onwards</td>
</tr>
<tr>
<td>Sign (Production Use)</td>
<td>October 11, 2018, tentative</td>
</tr>
<tr>
<td>Revoke KSK-2010</td>
<td>TBD</td>
</tr>
<tr>
<td>Remove KSK-2010</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Why the Updated Milestones?

- When the rollover started there was no way to measure resolver configurations
- During the project, a new measure was invented, implemented and rolled out
- The new measure's results were at best confusing and concerning
- So the rollover was paused to have a look
The Measure

- A readiness measure invented in the IETF
 - *Signaling Trust Anchor Knowledge in DNS Security Extensions (DNSSEC)*, aka RFC 8145
 - Quickly turned into code
 - Combined with a noticeable "tech refresh"
High-level Look at Data

RFC8145 Trust Anchor Reports for All Root Servers, 20170901 to 20180523

- Number of sources reporting trust anchor data
- Number of sources reporting only KSK-2010
- Percentage of sources reporting only KSK-2010
The Data

- Starting with a Verisign researcher, looking at two root of the servers
 - Noticed that the number of DNSSEC Validators having only the KSK-2010 was uncomfortably high (7%)

- Results were confirmed by ICANN and better reporting set up
 - Feed of data from nearly all of the root servers
 - Rates of "only KSK-2010" seemed to rise over time or as more reporters came on-line

- But data is not always informative!
The Early Analysis

- Is the data clean?
 - Some doubt about the measurement accuracy emerged

- Look for some systematic cause
 - No identifiable fault in popular DNS code
 - Although there is late-breaking news of a faulty app

- Brute force investigation
 - Contact sources of the "alarm"
 - Proved difficult
 - When there were responses, no significant systemic reason
 - Many dynamic addresses, raising questions about known use cases (running a DNS server on a dynamic address?)
Decision to Pause the Rollover

- September 2017, paused due to uncertainty

- No fault in the project plan or execution
 - (Which would have made this easier to fix)
 - Found that the plan's "backout/fallback" plans worked, no work was needed to enter the pause state

- ICANN has engaged the community for ways forward
 - Proposed an updated plan, asked for public comment
 - Open to external research on the issue
 - We don't have all the data, we can't/shouldn't in some cases
Since 2018 Feb 1
Since 2018 Feb 1

RFC8145 Trust Anchor Reports for All Root Servers, 20180201 to 20180523

Percentage of sources reporting only KSK-2010
What Do These Graphs mean (for a CERT)?

- When the rollover happens, there will be outages from operators not updating their configurations.

- The dilemma: these are people who have not gotten the message despite massive efforts to get the word out.
 - In a pinch, these operators will reach out.
 - If they sense it is "security" a CERT may be the place to call.

- Help is needed in preparing operators when possible, and mopping up afterwards.
Recognizing KSK-2017

- The KSK-2017’s Key Tag (defined protocol parameter) is 20326

- The Delegation Signer (DS) Resource Record for KSK-2017 is

```
IN  DS  20326 8 2
E06D44B80B8F1D39A95C0B0D7C65D084
58E880409BBC683457104237C7F8EC8D
```

"Root"

Note: liberties taken with formatting for presentation purposes
The DNSKEY resource record is:

```
IN DNSKEY 257 3 8
AwEAAaz/tAm8yTn4Mfeh5eyI96WSVexTBAvkMgJzkKTOiWlvkIbzxeF3
+/4RgWOq7HrxRixH1FlExOLA Jr5emLvN7SWXgnLh4+B5xQ1NVz8Og8kv
ArMtNROxVQuCaSnIDdD5LKyyWbRd2n9WGe2R8PzgCmr3EgVLrjyBxWezIF
0jLHwVN8efS3rCj/EWgvIWgb9tarpVUDK/b58Da+sqqls3eNbuv7pr+e
oZG+SrDK6nWeL3c6H5Apxz7LjVc1uTIdsIXxuOLYA4/ilBmSVIzuDWhfd
RUfhHdY6+cn8HFRm+2hM8AnXGXws9555KrUB5qihylGa8subX2Nn6UwN
R1AkUTV74bU=
```

"Root"

Note: liberties taken with formatting for presentation purposes
Current "State of the System"

- Sunny, as in “sunny day scenario” (despite the pause)
 - The KSK is changed under good conditions
 - Slow and cautious approach
 - Following the *Automated Updates of DNSSEC Trust Anchors* protocol (also known as "RFC 5011")

- Most appropriate point regarding "Automated Updates"
 - Requires 30 days to adopt the new key, but the "required 30 days" has long since past
Rollover Process (Validator view)

- Assumes DNSSEC is operating/configured to run
 - The KSK rollover is following the Automated Updates process
 - But the original add hold down time has expired

- (All) validators **SHOULD ALREADY** list the new KSK as trusted
 - Whether automatically updated or manually added

- If KSK-2017 is not there now, manual updating is needed

- Questions: How can one tell? How does one fix?
How Can one Tell (if DNS Cache Validates)?

- Send query for "dnssec-failed.org A" with DNSSEC flags
 - If the response holds a return code of SERVFAIL, DNSSEC validation is enabled
 - If the response holds an IPv4 address, DNSSEC validation is not enabled
Testing for DNSSEC

$ dig @$server dnssec-failed.org a +dnssec

; <<< DiG 9.8.3-P1 <<< dnssec-failed.org a +dnssec
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 10492
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
dnssec-failed.org. IN A

;; Query time: 756 msec
;; SERVER: 10.47.11.34#53(10.47.11.34)
;; WHEN: Tue Sep 5 19:04:04 2017
;; MSG SIZE rcvd: 46

DNSSEC validation is enabled!
Testing for DNSSEC

$ dig @$server dnssec-failed.org a +dnssec

;; <<>> DiG 9.8.3-P1 <<>> dnssec-failed.org a +dnssec
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5832
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags: do; udp: 512
;; QUESTION SECTION:
dnssec-failed.org. IN A

;; ANSWER SECTION:
dnssec-failed.org. 7200 IN 69.252.80.75

;; Query time: 76 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Tue Sep 5 18:58:57 2017
;; MSG SIZE rcvd: 62
How Can one Tell (if KSK-2017 is Trusted)?

- **BIND**
 - 9.11.x and onward "rndc managed-keys status"
 - 9.9.x and 9.10.x "rndc secroots"

- **Unbound**
 - Inspect the configured root.key file

- **PowerDNS**
 - "rec_control get-tas"

- **Knot Resolver**
 - Inspect the configured root.keys file

- **Microsoft Server**
 - "Administrative Tools"->"DNS"->"Trust Points"
Details on Checking Trust Anchors

- For further information, consult

https://www.icann.org/dns-resolvers-checking-current-trust-anchors
What Should Be Seen

- Two listed trust anchors for the root zone
 - KSK-2017, key-id 20326
 - If you don't see this, the validator will fail beginning about October 11
 - KSK-2010, key-id 19036
 - If you don't see this, the validator is not working now!
- Eventually KSK-2010 will "go away" - but not just yet
bind-9.9.5-testconfig $ rndc -c rndc.conf secroots
bind-9.9.5-testconfig $ cat named.secroots
05-Sep-2017 09:24:06.361

Start view _default

./RSASHA256/20326 ; managed
./RSASHA256/19036 ; managed

KSK-2017, aka 20326
KSK-2010, aka 19036
E.g., unbound

```
unbound $ cat root.key
; autotrust trust anchor file
;;id: 1
;;last_queried: 1504239596 ;;Fri Sep 1 00:19:56 2017
;;last_success: 1504239596 ;;Fri Sep 1 00:19:56 2017
;;next_probe_time: 1504281134 ;;Fri Sep 1 11:52:14 2017
;;query_failed: 0
;;query_interval: 43200
;;retry_time: 8640
172800 IN DNSKEY 257 3 8
AwEAAaz/tAm8yTn4Mfeh5eyI96WSVexTBAxMgJzkKTOiW1vkIbzxSwP/y4RgWOq7HrxRivqFlExOLAJrSmlmLVN7SWgnLh4+B5xQLNVz8OG8kvArM+OxVQUCaS0D65KvWH/02n9WGe2R8PzgC= -3EgVLRjyBxXmzF0jLHwVN8efS3rCj/EWgvIWgb9taRjDK/b58Da+sqqls3eNbw7pr+eoZG+Srh3JrLe3c6H5Apzx77jVc1uTlDsXXuOYa4/ilBmSVlZuDWr2ffHDy6+cn8HFRm+2J5AnXGXws9555KrsU9ihylGa8subXm6UwNRIakUTvT74Bu= ;{id = 20326 (ksk), size = 2048b} ;;state=2 [ VALID ] ;;count=0
;;lastchange=1502438004 ;;Fri Aug 11 03:53:24 2017
172800 IN DNSKEY 257 3 8
AwEAAagAIKlVZrpc6Ia7gEzahOR+9W29euyb1nVVLVOyQbSEW08gcCjFFVQUTf6v58fLjwBwYIOEzrAcQqBGc/zh/RStIoO8g0NfnfL2MTJrkxoXbfDaGVPQuYehg37NZWAJQ9VnMVDxP/VHL496M/Q7Kjf5/Efucp2qaDX6US6CxoY68LsvPVjr0ZSwzz1a/T5N9dlzEheX71CJBtuA6G3LQpzW5hO2hzCTM+QPJ8LbqF6dsV6DoBQzgul0sGICGQY170yQdxFz57refnOgeu+ipAdTTJ25AsRTAoubB8ONGcLmqrAmRLKP1dfwhYB4N7knNnulqQaxu+Uklihz0= ;{id = 19036 (ksk), size = 2048b} ;;state=2 [ VALID ] ;;count=0
;;lastchange=1459820836 ;;Mon Apr 4 21:47:16 2016
```
If One Sees Both KSKs trusted

- Take a nap during the next few slides
How does one fix?

- If one does not see both KSKs as trusted, then manual adjustments need to be made

- "How to's" are tool and environment dependent

https://www.icann.org/dns-resolvers-updating-latest-trust-anchor
Where to Get KSK-2017 Manually

- Via the official IANA trust anchor XML file at https://data.iana.org/root-anchors/root-anchors.xml
 - Contains the same information as a DS record for KSK-2017
 - Validate root-anchors.xml with the detached signature at https://data.iana.org/root-anchors/root-anchors.p7s

- Via DNS (i.e., ask a root server for “./IN/DNSKEY”)
 - Validate the KSK-2017 by comparison with other trusted copies

- Via “Other means” ...
What “other means” for a manual approach?

- **Most software/OS distributions of DNSSEC**
 - Embed copies of the KSK (now KSK-2010, later KSK-2017)
 - In contact with as many distributors as possible

- **Compare with the key from these slides**
 - Presuming you trust the contents of this presentation and the presenter :-)

- **Obtain a copy from another operator, or other trusted source**
 - How well do you trust "them"?
Symptoms of the Wrong Trust Anchor

- DNSSEC validation fails for everything, resulting from an inability to build a chain of trust
- All DNS responses will "SERVFAIL"
 - Even if the target zone is not DNSSEC signed
- Look in logs for validation failures, implementation specific
The Future

- **Revocation of KSK-2010 in 2018 the future**
 - Automated Updates will be used

- **There will be more KSK rollovers**
 - When, we don't know (yet)

- What to do – consider and configure Automated Updates capabilities
 - Whether it fits operational architectures
Tools and Resources Provided by ICANN

- Following slides will describe these further

- A python-language script to retrieve KSK-2010 and KSK-2017
 - get_trust_anchor.py

- An Automated Updates testbed for production (test) servers
 - https://automated-ksk-test.research.icann.org

- Documentation
 - https://www.icann.org/resources/pages/ksk-rollover
 - plus what was mentioned earlier
get_trust_anchor.py

- A tool that retrieves "https://data.iana.org/root-anchors/root-anchors.xml" and validates all active root KSK records

 https://github.com/iana-org/get-trust-anchor

- Contains extensive in-code comments/documentation
- Download & run in python v2.7, v3 or newer
 $ python get_trust_anchor.py

- Writes DS and DNSKEY records to files that can be used to configure DNSSEC validators
ICANN’s Automatic Updates Testbed

- Designed to allow operators to test whether production resolver configurations follow *Automated Updates*
 - The goal is to test production resolvers with live test zones executing a KSK rollover in real time
 - A full test lasts several weeks
 - Joining the testbed involves:
 - Configuring a trust anchor for a test zone such as 2018-05-13.automated-ksk-test.research.icann.org
 - Receiving periodic emails with instructions for what to do and what to watch for
 - https://automated-ksk-test.research.icann.org
Educational/informational Resources

- ICANN organizes KSK rollover information here:

 https://www.icann.org/resources/pages/ksk-rollover

- Link to that page can be found on ICANN's main web page under "Quicklinks"

- Contains links to what's been covered in this presentation, the get_trust_anchor.py script and information on ICANN's live testbeds
Those Reference URLs, once again

https://www.icann.org/dns-resolvers-checking-current-trust-anchors

https://www.icann.org/dns-resolvers-updating-latest-trust-anchor
Engage with ICANN

Join the ksk-rollover@icann.org mailing list
Archives: https://mm.icann.org/listinfo/ksk-rollover
KSK-Roll Website: https://www.icann.org/kskroll

@icann | Follow #KeyRoll
facebook.com/icannorg
youtube.com/icannnews
flickr.com/icann
linkedin/company/icann
slideshare/icannpresentations
soundcloud/icann