DSSA Update

Costa Rica – March, 2012

Goals for today

- Update you on our progress
- Raise awareness
- Solicit your input

Charter: Goals and Objectives

Report to participating SO's and AC's on:

- Actual level, frequency and severity of threats to the DNS
- Current efforts and activities to mitigate these
- Gaps in the current response to DNS issues
- Possible additional risk mitigation activities that would assist in closing those gaps

Unpacking some terms

Our charter speaks to "Threats"

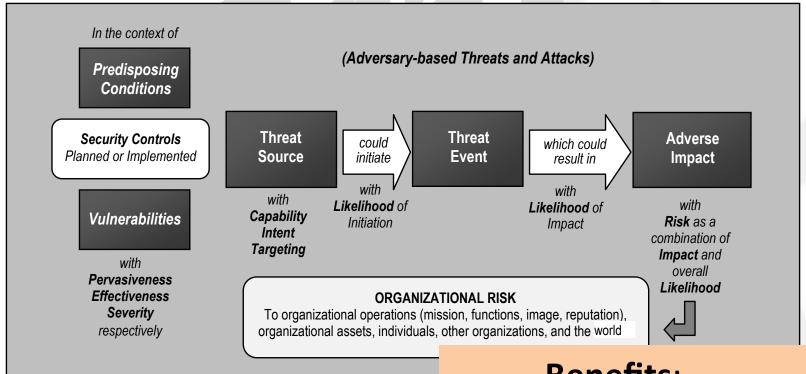
Threat-events (what happens) should not be confused with:

- Adverse impacts that may result
- Vulnerabilities that allow them to happen
- Predisposing conditions that help prevent them
- Threat-sources that initiate them
- Controls and mitigation that reduce likelihood and impact

Activity since Singapore

- The working group has:
 - Developed a protocol for handling confidential information
 - Selected, and begun to tailor, a methodology to structure the remaining work
 - Begun the detailed analysis of the risk assessment

Methodology – NIST 800-30


Rationale

- Using a predefined methodology will save time and improve our work product
- Reviewed several dozen alternatives
- We selected this one because it's:
 - Available at no cost
 - Actively supported and maintained
 - Widely known and endorsed in the community
 - Reusable elsewhere in ICANN

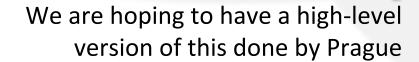
Methodology – NIST 800-30

Example – Adversarial Risk Model

Benefits:

- Consistent terminology
- Shared model
- Structured work
- Sample deliverables

Approach


Launch

Identify Threats & Vulnerabilities

Analyze
Threats & Vulnerabilities

We are here – getting started with this phase of the work

Report

Status

- 43 weeks (or 43 hours) in
- We've developed substantial (and reusable)
 - Data
 - Methods
- Given our resources, pick any 2 of 3 going forward
 - Detail (identify vs. analyze high-risk scenarios)
 - Speed (6 months vs. 36)
 - Accuracy

Determinations – Threat events and level of impact

Level of Impact:

In the worst case there would be broad harm/consequence/impact to operations, assets, individuals, other organizations and the world if any of these threat-events occur. And in all cases there would be significant problems for registrants and users in the zone.

Threat events:

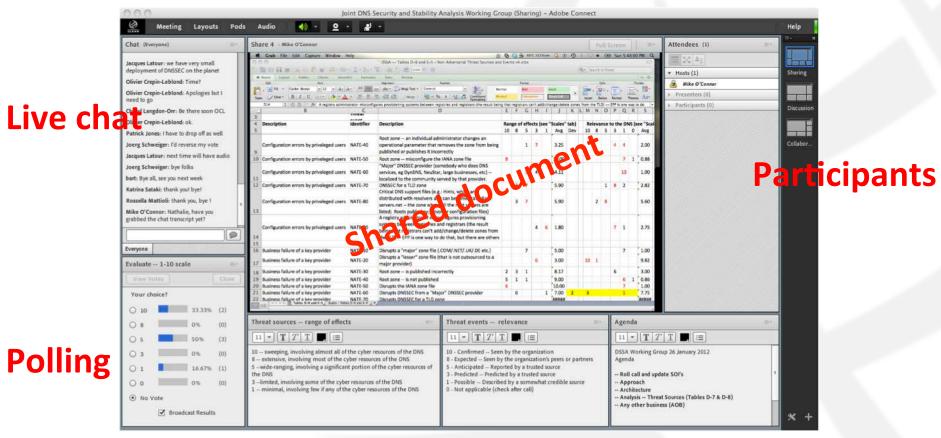
- Zone does not resolve
- Zone is incorrect
- Zone security is compromised

Determinations – Nature of impact

- Damage to a critical infrastructure sector
- Damage to trust relationships or reputation
- Harm to individuals
- Harm to assets
- Harm to operations

Where we are going

- Vulnerabilities severe and widespread?
- Predisposing conditions pervasive?
- Controls and mitigation effective and deployed?
 - Threat sources how broad is range of impact, what are their capabilities, how strong is their intent, are they targeting the DNS?
 - Initiation what is the likelihood that a threat-event will happen?
 - Given all of the above what are the highrisk scenarios?



Questions?

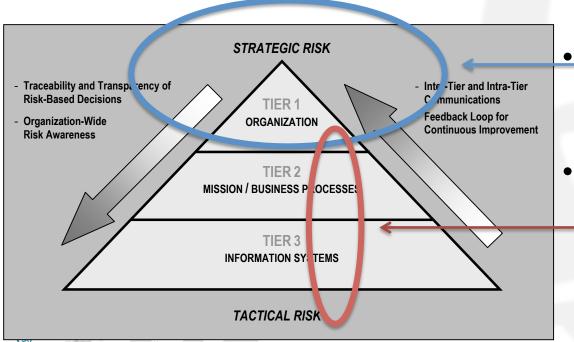
How we work

(design credit -- CLO)

Definitions

Agenda

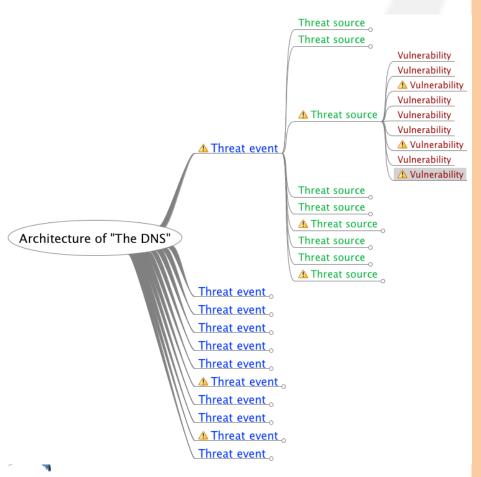
Charter: Background


At their meetings during the ICANN Brussels meeting the At-Large Advisory Committee (ALAC), the Country Code Names Supporting Organization (ccNSO), the Generic Names Supporting Organization (GNSO), the Governmental Advisory Committee (GAC), and the Number Resource Organization (NROs) acknowledged the need for a better understanding of the security and stability of the global domain name system (DNS). This is considered to be of common interest to the participating Supporting Organisations (SOs), Advisory Committees (ACs) and others, and should be preferably undertaken in a collaborative effort.

Methodology – NIST 800-30

Risk Management Hierarchy

The methodology presumes a tiered approach to the work



- DSSA is chartered to look at the broadest, most general tier
- However it may be useful
 to pursue one or two
 deeper, narrower analyses
 of specific threats once the
 "survey" work is complete

Problem: the evaluation per NIST methodology does not scale

It's all about choices.

- Threat tree could easily grow to over 1000 permutations
- Prune the tree along the way, in order to focus on the highest risks
- Leave a framework that can be used to address:
 - New things
 - Changes
 - Greater detail

Confidential information

Note: Sensitivity, attribution and release to public are determined by info-provider	001101110	Not sensitive
Not attributed to source (transmitted through trusted 3 rd party or summaries of Type 1 developed by sub-group)	Type 2: Distributed to subgroups only. (Info-providers determine ultimate distribution)	Type 3: Distributed to DSSA and public ("sanitized" info from subgroups and other nonattributed information)
Attributed to source	Type 1: Distributed to subgroups only (under NDA, mostprotected)	Confidential info must never pass through this path. This is the exposure of information we're trying to prevent.

