Localized labels for testing IDNs

Cary Karp
Swedish Museum of Natural History

Abstract: Significant attention is currently being focused on the technical and policy
bases for the introduction of top-level domains with labels derived from character
strings with non-ASCII components, as well as on the growing inclusion of such labels
in lower-level registries. Technical tests are being conducted in numerous contexts and
this draft is intended to facilitate the comparability of their results. It describes a
procedure for generating Punycode strings of arbitrary length that decode to
typographically plausible sequences of Unicode characters in any desired script,
without requiring particular understanding of unfamiliar writing systems. These strings
are intended for testing the response of software applications to encoded sequences of
ASCII characters of all possible lengths on all levels of a domain name, and the
appearance of the corresponding Unicode strings in the display space. Constraints on
the ability to base localized labels on established orthographies are also discussed.

Test requirements

The minimum length of a Punycode string is seven characters, encoding a single non-ASCII character.
If the current policy constraints on one- and two-character labels are taken to apply to the displayed
form, the minimum length of a stored Punycode string will be nine characters, corresponding to three
non-ASCII characters. It should be noted, however, that these length restrictions were established when
there was no difference between the stored and displayed forms of a label, and that some registries
regard them as attaching to the stored form. It may be expected, nonetheless, that an IDN-aware
revision of general policies can place the restriction on the number of displayed characters.

The longest TLD labels currently resolving in the root zone are the six-character .museum and .travel.
These are both stored and displayed as ASCII characters but problems have been observed with the
response of certain applications to them. However, since similar difficulty has been noted with shorter
TLD labels, the problems are more likely to result from failure to recognize the labels as valid TLD
designations, than simply from the length of the string. Assuming that requests will be made for new
TLDs labeled with dictionary words with display lengths roughly equivalent to .museum and .travel,
but written with non-ASCII characters, stored labels of twelve characters and longer will not be
uncommon. If, as may also be expected, such things as the names of countries appear in full native
representations, the lengths of the stored strings may be significantly greater. This suggests that stored
strings of up to the maximum permitted length of 63 characters require evaluation. Even if there is no
reason to expect that DNS resolvers will be taxed by the appearance of TLD labels of extreme length,
one of the purposes of the technical testing is to identify unanticipated frailty. The response of other
widely-deployed applications requires testing, in any case.



In many scripts, the way a character is displayed depends both on its position in a string and on the
specific characters adjacent to it. If these shaping properties are to be manifested in the test
environment as they are likely to appear in actual registered names, a test string cannot simply be a
sequence of randomly selected characters. It can, however, be derived from a word taken from a
dictionary of a language written with that script. If an online dictionary is available, its use will ease the
determination of the requisite Unicode codepoints and avoid need for the manual transcription of
unfamiliar scripts.

A distinction is made between conditions that pertain to laboratory testing in non-public namespaces,
and those that attach to tests conducted in the public namespace. The former is focused on the
generation of Punycode strings of varying length, with all display-side considerations relating solely to
script. The latter, however, will involve linguistic considerations. Any label that is entered into the root
zone of the DNS for the purposes of IDN testing will be categorically barred from subsequent
delegation as a production domain. It is therefore also advisable to use a test term that would be
unlikely to appear in the latter context, or is otherwise already restricted from such use. To reduce the
potential for difficulty to an absolute minimum, a single word is therefore being recommended for all
comparable test purposes.

The approach to generating test strings for use in private namespaces will be illustrated by deriving a
non-lexical sequence from the word “hippopotamus” (a term likely to be found both in bilingual desk
dictionaries and in corresponding online resources). To obviate any conceivable residual concern about
rendering it inviable for subsequent candidacy for encoding into a production TLD label, a numerical
sequence will be embedded in it. This is taken from the abbreviation “i18n” for “internationalization”,
and is based (but not dependent) on the assumption that no TLD labels will have numerical
components. No harm is likely to be done if the resulting string is unrecognizable in the language from
which it was derived. The purpose is to generate typographically plausible sequences of characters in a
variety of scripts, with no further semantic value or linguistic correctness being necessary (or even
desirable). A purely lexical alternative will also be described for application in the public namespace.

Generating test labels

The effect of a TLD label that decodes to a string consisting of a single non-ASCII character (the
minimum case) can be determined with the 17-character,

xn--flod18hst-12a

which is generated by the Swedish word flodhdist (a vernacular designation for the nearly extinct
Swedish Forest Hippopotamus, as well as the non-indigenous hippopotamus species), with the
interposed two digits,

flod18hist



This can simply be repeated to yield a Punycode string of arbitrary length, for example, the
27-character,

xn—flod18hstflod18hst-rtbj
from

flod18héstflod18hést
It will also be necessary to test ASCII-only sequences to distinguish between problems resulting solely
from string length, and those caused by encoded non-ASCII characters, or otherwise by the Punycode
prefix. One example of an ASCII-only string is the 56-character:

hippo18potamushippo18potamushippo18potamushippo18potamus

Total departure from the ASCII realm, using a simple alphabetic script written right-to-left, can be
illustrated with the 28-character:

xn--18-rjdbcudOneb9a8celezef
taken from the Yiddish:
DXURD 188!
This has the further advantage of testing embedded characters with opposing directional properties.

The properties of an alphabetic script with sophisticated shaping properties can be demonstrated with
the 20-character,

xn--18-dtd1bdiOh3ask

from the Arabic,

reill18 0w 48

No general assumption is made about scripts having syllable boundaries or other similarly convenient
points for inserting digits into the test string , nor are any assumptions made about appropriate ways to
proceed with non-alphabetic scripts. If the numerical device is not applicable, some other means should
be applied to make the test sequence useless in the production environment. Such demonstration strings
may be devised as appropriate for each desired script. (Note, however, that the string preparation
process can place more or less severe constraints on the use of some scripts, as discussed below.)



One example of a label derived from a non-alphabetic script is the 15-character,
xn--18-h31ew85n

from the Kanji,
{1855

Alternate approach

The procedure described above can be used to generate localized TLD labels for testing in the public
namespace. However, that environment differs from the closed laboratory situation in one extremely
significant regard — any recognizable linguistic attributes possessed by a string that resolves globally
must be rigorously controlled to avoid its being seen as inappropriate by any corresponding speech
community. In situations where that cannot be conveniently assured (or where the preceding approach
is unnecessarily intricate), one option would be the straightforward use of benign dictionary terms.

A convenient vocabulary is provided by the RFC 2606 list of “Reserved Top Level DNS Names”,
which explicitly lists four words that are restricted from autonomous delegation because:

“There is a need for top level domain (TLD) names that can be used for creating names
which, without fear of conflicts with current or future actual TLD names in the global
DNS, can be used for private testing of existing DNS related code, examples in
documentation, DNS related experimentation, invalid DNS names, or other similar uses.”

Of the four names then reserved,

(133

.test’ is recommended for use in testing of current or new DNS related code”
and

“‘.example’ is recommended for use in documentation or as examples.”
The name “example” is also reserved on the second level in the .com. .net, and .org TLDs.
It would be counter to the conditions of RFC 2606 for either “.example” or “.test” to resolve in the
root, but no restrictions are placed on lexical equivalents to those terms in other languages. One
obvious alternative would therefore be to generate test TLD labels from translations of the word “test”

into at least one language using each of the scripts that are represented in the public test. The second-
level label in each such TLD could be similarly generated from the word “example”.



As noted above, any test label that is placed in the root zone will be unavailable for subsequent
delegation. However, since the words “example” and “test” are already unavailable, similarly barring
the equivalent words in any of the languages figuring in the public test (or perhaps generally in
anticipation of future tests) would impose the smallest possible constraint on the production
vocabulary. The translated “example” and “test” equivalents can therefore be used freely as IDN test
strings in any situation where the intention is for them to be proper dictionary words. All requisite
terms will also appear in any bilingual dictionary as discussed above. Examples of strings determined
in this manner are 3aTg<or.9eT, A2 HIAE, and mapddetypo.8okipn. If longer TLD labels are
needed than than those generated by a single instance of a translation of “test”, the word can be
repeated as required, for example as, TecT-TecT-TecT.

Finally, the utility of the publicly-accessible IDN test TLDs can easily extend beyond the technical
trials specifically intended to precede the introduction of Punycode strings into the production root. It
may therefore be worth keeping selected “.test” equivalents in persistent use. The utility of any such
domain could be further enhanced by permitting the inclusion of second-level domains in addition to
the “example.test” equivalents, as specific contributions to the development of IDN are put forward
that would clearly benefit from appearing in this manner in the public namespace.

This demonstration registry might reasonably be placed under the administration of the IANA, with an
appropriate reference group. It would be useful, in any case, to include a shareable list of all test strings
generated from “example”, “hippopotamus” and “test”, plus any additional terms used for the purposes
described here, in the “IANA Repository of TLD IDN Practices” at,

http://www.iana.org/assignments/idn/
General constraints

For differing reasons, all of the elements of a given writing system that might reasonably be requested
for inclusion in a localized domain name may not actually be available. Some restrictions are inevitable
consequences of the domain namespace never having been intended to serve as a vehicle for literary
expression. Other limitations result from unanticipated problems and may be eliminated through
protocol or policy revision. Converse difficulties have also resulted from excessive latitude in the
available repertoire, and some currently viable characters may become unavailable both as IDNA is
refined, and as registries adopt more restrictive policies.

Work is in underway in several contexts that is intended to clarify and rectify these issues. On first
consideration, this might appear to be on a level of detail that is irrelevant to technical trials of the type
described above. The agencies conducting such activity may, nonetheless, become engaged in dialog
with local communities about specific constraints placed on their languages. This will require some
familiarity with the kinds of limitations that are still being addressed, and the ability to assess the
degree of transiency of specific issues. Key pending details are therefore reviewed below.



Many symbols that are neither alphanumeric nor ideographic components of a written language, such
as line-drawings and pictographic dingbats, are currently permitted in IDNA but are likely to be
blocked in a coming revision. Discussions are still underway about the extent to which other non-literal
and non-numerical characters should be available for inclusion in alphanumeric strings, and about
corresponding matters in the ideographic realm. In one sense, this equates to the consideration of
whether or not to permit punctuation marks in addition to the hyphen which (for better or worse) is
already firmly established in the namespace. Many scripts use other symbols for purposes roughly
parallel to the function of the hyphen in English orthography, and do not recognize the hyphen at all.
Despite this, it is unlikely that there will be any general rule about one (or some other small number) of
symbols being made available for every such script.

There are, however, situations with specific languages where non-literal adjunct marks can be seen as
essential elements of even a skeletal orthography, and the extent to which they can be safely permitted
is being considered. In addition to the prohibitive criterion of visual confusability with protocol
elements, directional properties are also an important factor. One example of graphic concern being
offset by directionality is the Hebrew punctuation geresh, which is typographically similar to an
apostrophe but serves an essential phonetic function in the representation of both the Hebrew and
Ladino languages.

Unintentional further difficulty results from the directional properties of combining marks. The
Stringprep component of IDNA currently requires that a string of characters in a script that is written
right-to-left neither begins nor ends with a combining mark. (A string of left-to-right characters may
not begin with a combining mark either, but it may end with one.) In a number of scripts, vowels are
indicated as combining marks that appear together with consonantal base characters. Therefore, when
such scripts are written right-to-left, since combining marks are always stored following the base
characters to which they apply, there can be a significant problem in representing languages with
orthographies that require explicit vowel marks.

The clearest example of this that has thus far been noted in the discussion of IDNA is Dhivehi, the
official language of Maldives, which is written in the Thaana script (in the Unicode block
U+0780...U+07BF). Unlike Arabic and Hebrew orthographies which can readily forgo vowels in
contexts such as IDN, vowels are always written in Dhivehi. They are indicated with combining marks,
as are consonants and double vowels in word-final position. Every Thaana string thus ends with a
combining mark and will be rejected by Stringprep (as may be tested with the Dhivehi word for
hippopotamus, »<55~%),

There are reasonable IDN labels derived from other languages written with right-to-left scripts that will
be similarly rejected because of final combining characters, and there are also cases with left-to-right
scripts where the label-final character cannot be correctly represented. One example of this is the
lowercase Greek final sigma “G”, which is normalized to the initial and medial form “0” and never
displayed at the end of Unicode string that has been decoded from a stored Punycode sequence. This



prohibits the correct representation of many names, such as that of the country Cyprus, which can only
be incorrectly represented in IDN as “KoIIp0o0”. The German Esszet “B” is similarly irrecoverably
normalized to “ss” in the encoding process.

Appendix 1

The discussion of earlier versions of this text has revealed some misunderstanding about the first phase
of the test action that has been commissioned in the interim. This is focused almost exclusively on the
response of applications to Punycode strings of varying length when they appear in the top-level slot.
The test strings were encoded from scripts selected on the basis of technical detail (as discussed in the
body of this text). This selection was made without regard to demographic or other socio-linguistic
factors that pertain to any languages that are written with these scripts.

Although the dictionaries of specific languages were consulted at the outset of the preparation of these
test strings, the subsequent process methodically transformed the initial terms into character sequences
that are not words. However, since the display form of a test string needs to have plausible typographic
properties, some vestigial word-like appearance may remain. If any such sequence is discovered to be
offensive or otherwise clearly inappropriate in an unforeseen cultural regard, it will simply be removed
from the test roster.

Discussion of the prioritization of scripts as they appear in the public namespace in a later phase of the
test needs to be conducted separately, and may reasonably apply to the instantiation of the fully lexical
alternate approach described above. That action will be based on policy considerations that are still in
early stages of consideration. The development of those policies will, in turn, be informed by the
outcome of the impending technical trials in private namespaces.

Appendix 2

An extensive list of Punycode strings, including those listed above and extended with additional
sequences needed for laboratory testing, will be appended to a subsequent version of this document.

Acknowledgements

This draft originated in a request by the ICANN President's Advisory Committee on IDN for a list of
localized TLD labels for use in a series of impending technical trials. The text was then discussed by
the working group that maintains the ICANN Guidelines for the Implementation of IDN, during the
course of its work on rendering that document applicable to the top-level of the DNS. Further valuable
commentary was received from an informal group of IETF members considering the need for
modification of the IDNA protocol, and other colleagues.



All members of these groups are thanked for their advice, with particular acknowledgment of the
contributions of the following people (in alphabetical order):

Harald Alvestrand
Tina Dam
Mohammed EI Bashir
Michael Everson
Patrik Filtstrom

Hiro Hotta

Pat Kane

John Klensin

Ram Mohan

Author's address:

Cary Karp <ck@nrm.museum>
Swedish Museum of Natural History
Frescativigen 40

SE-10405 Stockholm



