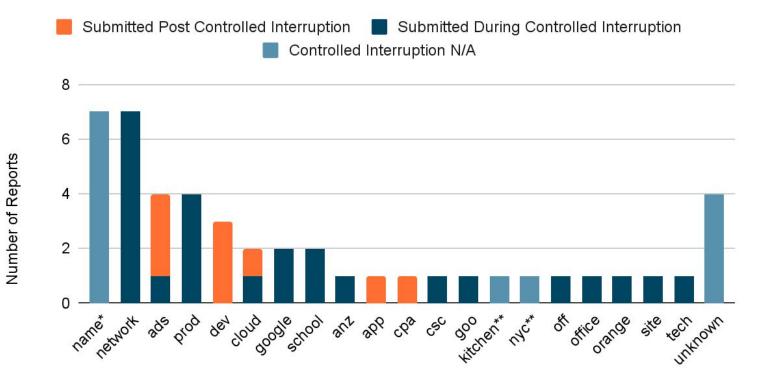
ICANN Name Collision Reports Root Cause Analysis

Casey Deccio NCAP Technical Investigator

Background

- In summer 2021 I was given the responsibility of investigating the name collisions reports submitted to ICANN between 2014 and 2021.
- Initial task: contact each submitter, and find out more details about their submission.
- However, I was not granted permission to contact the submitters.
- Root cause analysis became an exercise in measurement, data collection, and analysis.

Major Questions:


- 1. What can we learn from the name collisions reports submitted to ICANN?
- 2. What name collisions were experienced more generally?
- 3. What was the user/administrator experience with name collisions?

Question 1: What can we learn from the name collisions reports submitted to ICANN?

Name Collision Reports - Overview

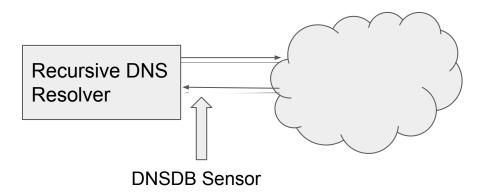
- 47 Reports (43 reports include TLD)
 - 7 reports related to wpad.domain.namevulnerability (see other report)
 - 2 reports new TLDs delegated prior to controlled interruption (kitchen and nyc)
 - 34 reports new TLDs delegated after controlled interruption
 - 25 reports reported during controlled interruption
 - 9 reports reported after controlled interruption
- 20 TLDs reported
 - 1 TLD related to wpad.domain.namevulnerability (see other report)
 - 2 TLDs delegated prior to controlled interruption (kitchen and nyc)
 - 17 TLDs delegated after controlled interruption

Name Collision Reports - By Submission Date

Name Collision Reports - Severity

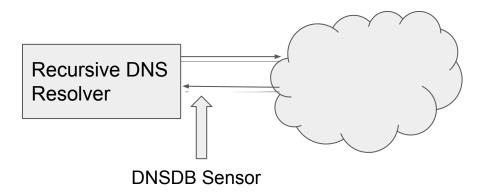
- Parties invited to submit report if experiencing "demonstrably severe harm."
- Reports independently classified (subjectively) by description entered:
 - **Severe: 7**
 - "more 30,000 employees in over 7 countries",
 - "all of our staff laptops ... crash"
 - Significant: 10
 - "CRM, MAIL and other Services ... do not work correctly"
 - "Unable to resolve internal Hostnames"
 - Small-Scale: 10
 - "can't access to some servers"
 - "home network disruption"
 - **Unknown: 7**

Name Collision Reports - Severity


Name Collision Reports - Other Observations

- 127.0.53.53 is only mentioned by 8 (24%) of 34 reports.
- VPN usage is mentioned by 8 reports (33% of the 24 submitted by orgs).
- AD usage is mentioned by 8 reports (33% of the 24 submitted by orgs).

Question 2: What name collisions were experienced more generally?


Data Source: DNSDB (by DomainTools)

- DNSDB contains historical DNS name-to-resource mappings.
- Mappings come from DNS responses made at deployed sensors.
- Only positive responses included in DNSDB (i.e., not NXDOMAIN).
- During controlled interruption period for a TLD, *all* responses are positive.
- No IP address available; only query count.

Data Set: Controlled Interruption Queries

- 885 gTLDs delegated between August 2014 (start of controlled interruption) and June 2021.
- Retrieved *every* DNS mapping observed during controlled interruption period for every new gTLD.
- Effective result: every qname/count queried for yet-to-be-delegated TLDs.

Quantifying Name Collisions - Possible Metrics

• qname composition:

- Number of unique qnames too fine-grained by itself
- Number of unique SLDs does not necessarily align with organization or configuration
 - Example: foo.bar1.baz.com and foo.bar2.baz.com
 - Example: state.ut.us and k12.ut.us
- Query origin (unavailable with DNSDB):
 - Client IP address count
 - Origin AS count
- Query count:
 - Useful in conjunction with query origin and qname composition

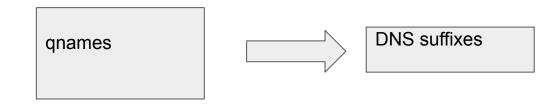
Quantifying Name Collisions - DNS Suffixes

• DNS Suffix

- Known as "Search domain" (Windows) or "domain" or "search" resolv.conf entry (UNIX/Linux).
- Typically configured by the "network", either dynamically (e.g., via DHCP) or statically.
- \circ ~ Used for various purposes:
 - Search list processing for unqualified domains foo foo.example.com
 - Web Proxy Auto-Detect (WPAD)

wpad.example.com

ISATAP (IPv6 tunnel gateway detection)

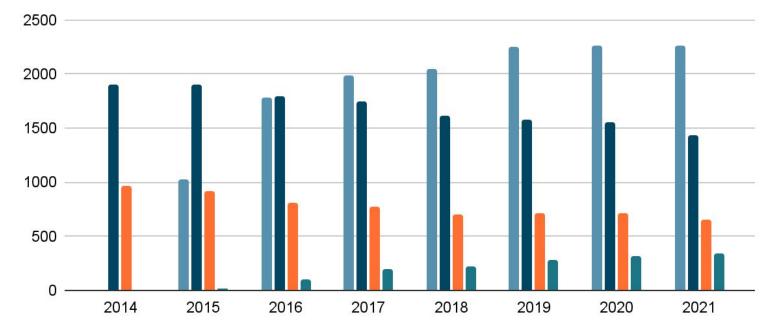

isatap.example.com

Chrome "NXDOMAIN probing"

abdef.example.com ghijk.example.com lmnop.example.com

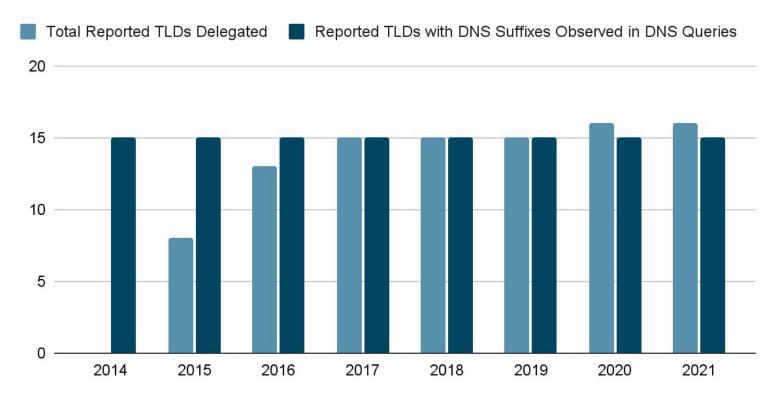
Quantifying Name Collisions - Leaked DNS Suffixes

- Extracted DNS suffixes from qnames in DNSDB data using three methods:
 - Inferred Chrome NXDOMAIN probe: 3 one-time queries in 1 second, all with same suffix
 - WPAD DNS query: query observed with wpad as first label
 - ISAPTAP DNS query: query observed with isatap as first label
- DNS Suffixes extracted: 2,762
 - Includes suffixes from 498 TLDs
- DNS Suffixes reduced to 2,266
 - Excludes TLDs and suffixes from TLDs with low overall suffix counts
 - Includes suffixes from 266 TLDs
 - These become the basis for subsequent analysis

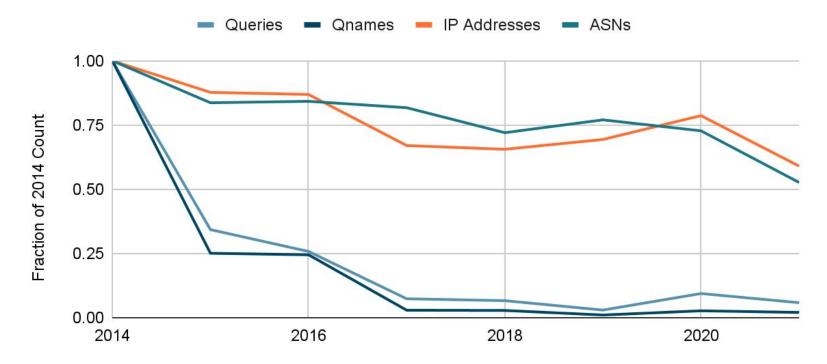


Quantifying Name Collisions - Leaked DNS Queries at Root

- Filtered DNS queries seen at DNS root servers by identified DNS suffixes
- Root servers: A, C, H, and J
- Years: 2014 through 2021

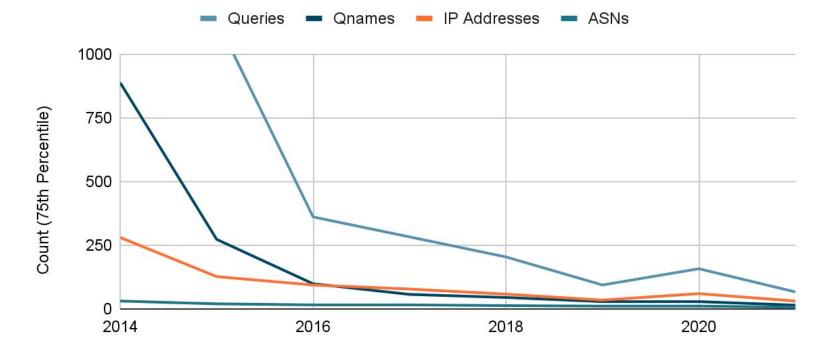

Quantifying Name Collisions - Observed DNS Suffixes

Total Suffixes from Delegated TLDs
Suffixes Observed in DNS Queries
Suffixes from Reported TLDs Observed in DNS Queries
Suffixes Observed in DNS Queries - Non-Cl Mappings Exist



Quantifying Name Collisions - TLDs of Observed DNS **Suffixes** Total Delegated TLDs **Total Delegated TLDs (filtered)** TLDs with DNS Suffixes Observed in DNS Queries

Quantifying Name Collisions - TLDs of Observed DNS Suffixes (Reported TLDs Only)



Quantifying Name Collisions - Overall DNS Queries

Year

Quantifying Name Collisions - Per-Suffix 75th Percentile

Year

Question 3: What was the user/administrator experience with name collisions?

Measuring Impact - Name Collision Report Challenges

- Challenges with ICANN name collisions reports
 - **Bias:** only includes experiences for which:
 - Problems were experienced.
 - Those experiencing problems identified ICANN as the entity to which collisions should be submitted.
 - Presumably, problems experienced resulted in "demonstrably severe harm."
 - **Result:** no way to reliably measure the following:
 - Those using publicly delegated TLDs as private namespace, experiencing no problems
 - Those that experienced problems but didn't report them
 - Those that experienced a spectrum of severity

Measuring Impact - Survey on DNS Suffix Usage

• Survey questions

- Are DNS suffixes under new gTLDs in "private" use by organizations?
- Which suffixes and TLDs are used?
- Were problems experienced?
- Was 127.0.53.53 observed?
- What was the impact on users and systems?
- Survey distribution
 - General Survey: sent to NANOG mail list
 - **Targeted survey:** sent to AS contacts from which leaked private DNS queries were observed
 - Matched DNS suffix to AS description
 - 28 contacts

Measuring Impact - Survey Results

- 10 respondents indicated that their organization used private DNS suffixes.
- 7 respondents indicated problems related to name collisions.
- Problem discovery took days (43%), weeks (14%), or months (43%).
- Problem resolution took days (29%) or years (29%), some unresolved (29%).
- Only 14% of cases indicated that 127.0.53.53 was observed and helpful.
- In 71% of cases, 127.0.53.53 was not observed at all.

Findings

- Private use of DNS suffixes is widespread.
- Name collision reports are supported strongly by measured data.
- Usage of known, private DNS suffixes has decreased over time.
- Controlled interruption is effective at disruption but not at root cause identification.
- Configuring DNS resolvers as authoritative for DNS suffixes is not a panacea.
- The impact of TLD delegation ranged from no impact to severe impact.

Future Work - Identifying "Who" is Impacted and "How Much"

- General observations from analysis:
 - Even statically configured systems are mobile.
 - DNS queries might never leak from their origin ASN.
 - Many ASNs are ISPs.
 - Generic suffixes are in use.
 - Regional subdomain suffixes are in use.
 - Some TLDs are commonly used for Active Directory services.
- Proposal:
 - Automated AS-suffix association.
 - Large-scale reach-out to affected parties.