## NCAP Discussion Group | 17 February 2021 | 19:00 UTC Agenda:

- 1. Welcome and roll call
- 2. Update to SOI
- 3. Update on Study 2
- 4. Analysis of Leakage

- 5. Data Measurements / Board Questions
- 6. AOB

#### **Table of Contents**

| ACTION ITEMS                                                   | 1 |
|----------------------------------------------------------------|---|
| SOI:                                                           |   |
| STUDY 2:                                                       |   |
| PRESENTATION                                                   |   |
| SLIDE 1: Agenda                                                |   |
| SLIDE 2: String Query Volume                                   |   |
| SLIDE 3: String Query Persistence                              |   |
| SLIDE 4: String Query Persistence 2                            |   |
| SLIDE 5: String Query Persistence 3                            | 4 |
| SLIDE 6: String Query Rapid Volume Increase                    | 5 |
| SLIDE 7: IDN Strings                                           | 5 |
| SLIDE 8: IDN String Query Volume                               | е |
| SLIDE 10: String Query Volume &b Source Affinity/Concentration | 8 |
| DISCUSSION                                                     | 8 |

### **ACTION ITEMS**

| MEETING DATE | DESCRIPTION                                                                                                        | OWNERSHIP |
|--------------|--------------------------------------------------------------------------------------------------------------------|-----------|
| 17 Feb 2021  | Suggestion that a group workspace be utilized to start noting team's thoughts on what measurements to pursue, etc. | Team      |

| No decision made on 17 Feb; suggest this |
|------------------------------------------|
| be re-discussed at next meeting          |

SOI: None

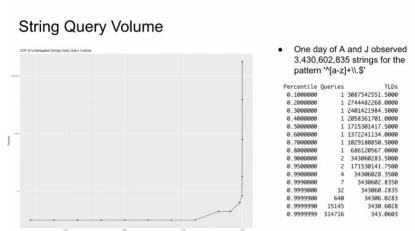
STUDY 2: SSAC sometimes sends docs to ICANN Legal to check it – very appropriate to do so and not giving ICANN unnecessary influence over documents. Study 2: conflict of interest text has been modified so we will send to LEGAL to review again. Next goes to BTC.

#### PRESENTATION:

 $https://docs.google.com/presentation/d/1v438RWk8mFPwr9G93CO5H5JS3PQtMrU9zwXyd0vv\\ qWo/edit\#slide=id.p$ 

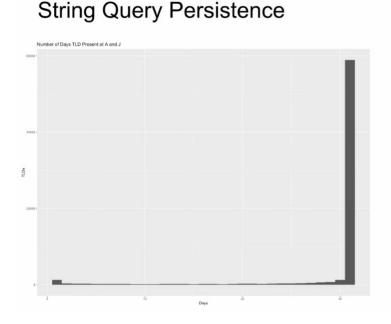
# Name Collision Analysis Data Analysis Part 2

SLIDE 1: Agenda


## Agenda

"Can we predict what strings are going to make the Internet go boom and is there a way to mitigate any of these if we do discover them so?"

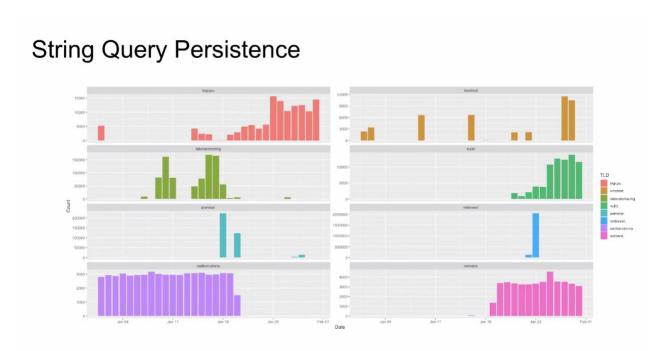
- 1. How big is the ocean? How many fish are in it? How many sharks?
- Continue deliberating how we incorporate these data exploration case studies back into guidance that we must provide for the Board's 10 questions.


Want to determine distribution of query strngs

SLIDE 2: String Query Volume

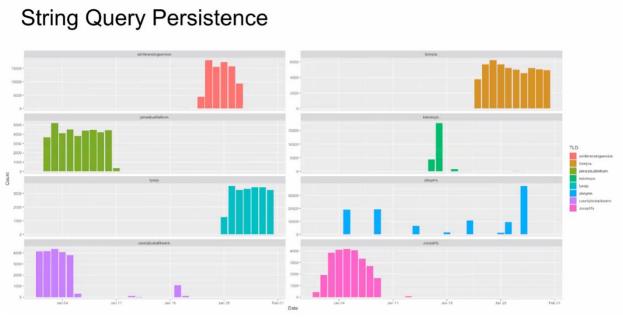


1 days worth of queries. String that contains only characters that are a thru z. 3 billion strings that matched that pattern, distinct strings ones. What is distribution of distinct strings look like in terms of query volume. 99% percentile are receiving less than 4 queries. Very limited pool. There is a finite # of strings we are looking at. Volumetric based strings is important context.


SLIDE 3: String Query Persistence



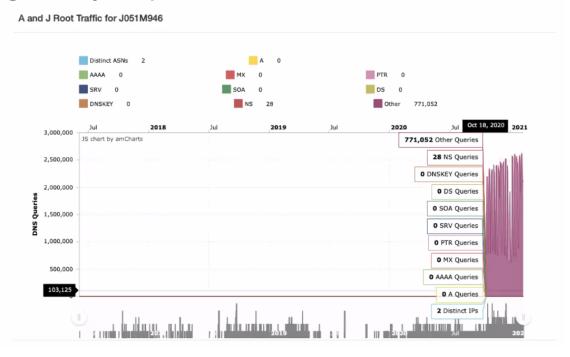
- One month of A and J root data matching previous REGEX, in which a TLD receive >= 500 queries for 1 out of the 31 days in January 21
- Vast majority (~86%) of strings are present every day during month
- 9,735 out of 68,615 strings were seen less than 31 days.


Frequency? Measured # of days we saw. 86% were seen daily. How long do you need to do a data capture then?

SLIDE 4: String Query Persistence 2



strings only present for 13-14 days out of 31 days. Why do some disappear? Do they fix their strings?


SLIDE 5: String Query Persistence 3



THESE were present for 6 or 7 days

SLIDE 6: String Query Rapid Volume Increase

# String Query Rapid Volume Increase

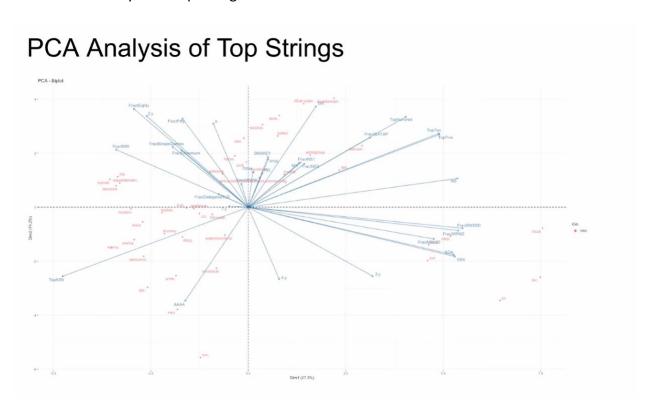


One Top string is j051md46 goes back 2018 then Oct 2020 the traffic becomes 2.5 million quieres per day. Temporal dependency

SLIDE 7: IDN Strings



A-Z only search excludes IDNs. Decent amount of IDN strings that are leaking up into the root.


SLIDE 8: IDN String Query Volume

## IDN String Query Volume

| TLD \$            | Return<br>Type * | Total 0 | A 0    | AAAA \$ | мх≑ | PTR | SRV | SOA # | DS \$ | DNSKEY | NS \$  | Other | RD 0 | Countries | ASN |
|-------------------|------------------|---------|--------|---------|-----|-----|-----|-------|-------|--------|--------|-------|------|-----------|-----|
| xnc6h             | NXD              | 467     | 258    | 229     | 0   | 0   | 0   | 0     | 0     | 0      | 0      | 0     | 0    | 2         | 1   |
| xn—9hb            | NXD              | 23871   | 21528  | 2221    | 0   | 3   | 0   | 0     | 83    | 0      | 23     | 0     | 0    | 31        | 72  |
| xn6ii             | NXD              | 68830   | 34541  | 34231   | 0   | 0   | 0   | 0     | 0     | 0      | 25     | 0     | 0    | 1         | 4   |
| xnmgbqly7cvafr    | NXD              | 231275  | 107    | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 230920 | 0     | 0    | 5         | 4   |
| xnmgb2ddes        | NXD              | 233369  | 137    | 1       | 0   | 0   | 0   | 0     | 0     | 0      | 232690 | 0     | 0    | 5         | 4   |
| xnmgbtf8fl        | NXD              | 234777  | 101    | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 233889 | 0     | 0    | 5         | 4   |
| xnmix082f         | NXD              | 246012  | 11     | 0       | 0   | 0   | 0   | 3     | 0     | 0      | 244875 | 19    | 0    | 4         | 4   |
| xnnnx388a         | NXD              | 260231  | 4      | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 260022 | 27    | 0    | 5         | 4   |
| xnmgba3a4fra      | NXD              | 260869  | 3      | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 260532 | 0     | 0    | 4         | 2   |
| xnmgbqly7c0a67fbc | NXD              | 265647  | 0      | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 265536 | 0     | 0    | 4         | 2   |
| xnmgbai9a5eva00b  | NXD              | 265667  | 0      | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 265444 | 0     | 0    | 4         | 2   |
| xnmgberp4a5d4a87g | NXD              | 265673  | 0      | 0       | 0   | 0   | 0   | 0     | 0     | 0      | 265549 | 0     | 0    | 4         | 2   |
| xn0qah2a36aa4215c | NXD              | 289503  | 145765 | 143891  | 0   | 0   | 0   | 0     | 0     | 0      | 0      | 3     | 0    | 4         | 12  |

xn--c6h = ♡

SLIDE 9: PCA Analysis of Top Strings



اليمن

澳门 臺灣

□,′-

Lower left hand corner: stings focused on traffic heavily anchored or biased within a specific set of ASNs

SLIDE 10: String Query Volume &b Source Affinity/Concentration

## String Query Volume & Source Affinity/Concentration

| tld            | request_count | sld_count | qname_count | dstip_count | dstip24_count | asn_count | date       |
|----------------|---------------|-----------|-------------|-------------|---------------|-----------|------------|
| dhcp           | 73,079,967    | 830,634   | 5,611,411   | 34,629      | 8,909         | 2,900     | 2021-02-08 |
| svc            | 47,726,588    | 101,497   | 12,498,196  | 30,224      | 6,832         | 2,605     | 2021-02-08 |
| bbrouter       | 30,787,187    | 5,094,605 | 5,919,697   | 22,241      | 4,779         | 2,033     | 2021-02-08 |
| novalocal      | 11,386,555    | 76,386    | 596,335     | 24,298      | 6,961         | 2,626     | 2021-02-08 |
| openstacklocal | 10,680,435    | 201,293   | 2,090,396   | 31,036      | 6,416         | 1,746     | 2021-02-08 |
| sercomm        | 10,395,878    | 476       | 8,555,996   | 4,945       | 1,498         | 510       | 2021-02-08 |
| telus          | 9,178,900     | 2,933,467 | 2,991,455   | 11,134      | 3,005         | 922       | 2021-02-08 |
| realtek        | 9,150,083     | 4,868,688 | 5,085,186   | 28,208      | 6,342         | 2,959     | 2021-02-08 |
| coship         | 9,021,391     | 4,227,154 | 4,287,714   | 3,753       | 739           | 267       | 2021-02-08 |
| ctc            | 7,201,080     | 900,629   | 1,468,549   | 11,942      | 2,746         | 711       | 2021-02-08 |
| unite          | 5,412,302     | 59        | 414         | 361         | 172           | 95        | 2021-02-08 |
| dummy          | 2,499,527     | 23,393    | 24,677      | 39,522      | 15,992        | 6,761     | 2021-02-08 |
| neo            | 2,388,550     | 2,704     | 587,488     | 3,168       | 915           | 409       | 2021-02-08 |
| envoy          | 1,529,341     | 5,021     | 5,205       | 3,860       | 274           | 84        | 2021-02-08 |
| qto            | 27,265        | 170       | 334         | 315         | 76            | 27        | 2021-02-08 |
| modern         | 884           | 191       | 254         | 449         | 208           | 113       | 2021-02-08 |

Can a proactive outreach or remediation effort tactually prevent or reduce that risk because you have the ability to talk to a narrower group of perpetrators.

Jeff: Do each of these tlds meet the persistence of 30 days out of 30days? Matt: yes, assume that.

Jeff: each of these tlds, do you know any of them associated with a particular company, etc? Matt: some are ISP Manufacturers are easy to identify. Other ones you have to look at ASNs it is leaking from to figure out – find source

#### **DISCUSSION**

MEASUREMENTS WE SHOULD CATALOGUE AROUND WHAT QUESTIONS WE SHOULD ASK DATA SOURCES/PROVIDERS?

Jim: now we need to figure out what is next. What other analysis should we do? Review Board questions.

Matt: .corp/.home/.mail were specified for review by the Board.

Rod: create a group work space to start writing down measurements we want and discuss each. If you have a string you see in A & J data or diddle data and there is a chance for minimization do we want to collect a list of those and ask recursive operators about what distribution looks like. About corp/.home/.mail we have a lot of data- lets start testing the measurements we have proposed

Jeff: we are talking about finite set of strings. From that set will se determine what correlations we can make and advise the board for future applications. Do we think there is a need to go down another level to strings that haven't met the high%. Will we decide that below a certain threshold it is safe (or not worth look at?

MATT: qualitative component. What guidance to give when you don't have traffic data to do a risk assessment but the string itself is using a word that has potential risk or harm (like .nuclear)

JIM: unlikely that we can provide a black and white algorithm that the Board can use to judge any case. Instead we will give them tools to use but also need to use their judgement. Regarding Matt's data: