

The interests of the Internet end users as they relate to the security and stability of the Internet

Dr. Steve Crocker | ICANN69 | October 19, 2020

Dr. Steve Crocker

- Internet Pioneer, early leader of ISOC and IETF
- Creator of RFC Series
- Chair of ICANN Security and Stability Advisory Committee (2003-2010)
- Chair of ICANN Board (2011-2017)

DNS Ecosystem

To access internet resources in a secure and stable manner, internet end users rely on ISPs and the following stakeholders:

- Domain Name Registration
- DNS Infrastructure
- Content Hosting and services

Conceptual Framework For Security

Security Conceptual Framework

CIA "Triad" - A security model that helps people think about various parts of IT security

Availability: Ensuring data and services are available for use whenever required by their end users

Integrity: Maintaining the consistency, accuracy, and trustworthiness of data

Confidentiality: Preventing the disclosure of information to the wrong people while being used or stored by authorized end users

Internet and Users: Availability

- Ensuring the baseline
 - "Root" DNS provides the foundation of the domain name system
 - 13 primary server identities run by multiple organizations
 - Massively overprovisioned
 - Embedded into software ensures a hierarchy for all end user interaction with service names
 - Multiple servers for each name on the DNS "tree"
 - Coordinated redundancy ensures end user can find resolve the name of the service they seek
- Many paths to your destination
 - The Internet is a network of networks, not a single thing
 - Networks peer with many others creating massive grid
 - If one path fails, another almost always available
 - Redundant and myriad connections ensure end users can find the services and resources they wish to connect with

Internet and Users: Integrity

- Data integrity over the Internet
 - SSL, TLS, HTTPS these secure protocols also help ensure the data transmitted is the same that was intended to be received by an end user
 - IPSec suite of protocols and encryption that protect one or more data flows between IPSec peers
 - Technologies are ubiquitous in software used everywhere and allow for trustworthy Internet communications
 - End users are assured that data requested is accurate
- Integrity of communications signals
 - DNSSEC cryptographic assurance that DNS query/responses include their published values
 - Ensures that ensuing communications are held between the end user and the intended resources
 - Protects end users from malicious redirection
 - Important to increase adoption for better user protection

Internet and Users: Confidentiality

- Data encryption over the Internet
 - SSL, TLS, HTTPS secure protocols that allow data to be transferred across the internet over encrypted connections
 - Supported by certificate technology that tie encryption to unique internet identifiers
 - Well-supported and standardized allow software developers, website providers, and others to create easily used tools for end users to enjoy confidentiality on the Internet
- Encryption of communications signals
 - DoH/DoT recent technologies that encrypt DNS queries themselves
 - Protects query data in-transit but not at DNS servers
 - Users may avoid surveillance and unwanted filtering
- ISPs and software vendors make decisions on which technologies to adopt for their end users

Registration Data

Availability: SSAD, RDAP

Integrity: accuracy

Confidentiality: Privacy and Proxy services

Conceptual Framework For Stability

Stability Conceptual Framework

- Are services delivered consistently and reliably?
 - Consistent do you get the expected results from your interactions every time?
 - Unique If you use a unique identifier to connect to something, is there just one proper result?
 - **Ubiquitous** is the resource you are working with available everywhere or at least where it is supposed to be?
 - Reliable can you access the data and services you need consistently over time?
 - Responsive do you get the desired interaction accomplished in sufficient time?
- Decisions on Internet protocols, identifier policy, and provisioning of services are made to achieve these goals for the Internet's end users

One World, One Internet

- Names and numbers on the Internet are uniquely assigned to ensure unambiguous and consistent results for finding data and services for end users
 - ICANN, ccTLDs and the domain name provisioning industry ensure the interoperation of all domain names
 - Root DNS servers provide a single, consistent foundation worldwide for the TLDs and individual names in the hierarchy
 - Alternative roots do exist for other protocols
 - DNS alternative roots have largely failed
 - RIRs distribute numbers to ISPs and edge networks
 - ISPs peer with each other to route traffic using a single set of addresses but multiple paths
 - ISP peering/routing decisions gear towards performance and availability for their end users
- Software is developed with libraries that utilize these principles
- End users can assume resources are unique without concern

Provisioning - a key to the Internet's success

- End users expect the Internet to "just work" as long as they have a good connection
- Overprovisioning and redundancy allow for fast, reliable services available everywhere
- Massive peering and the underlying protocols ensure that data can find a path to get to its destination
 - The Internet was designed to always keep trying get data through, and ISPs route/peer with this in mind
 - ISPs usually make routing decisions for performance
- Content delivery networks (CDNs) move resources closer to users, distribute loads, and provide for unique content depending on user location
 - More recent development uses routing tricks and colocation of equipment to move data closer to end users

Call For Action

Call For Action

- End users should insist on DNSSEC and DNSSEC enabled technologies.
 - signing your own domain
 - validate lookups
 - Express preferences for sites that are signed.

Thank you

Credits

 CIA Triad Diagram: https://www.ibm.com/blogs/cloudcomputing/2018/01/16/drive-compliance-cloud/

