
Security in DNS
What it is, and why it matters ...

Who am I?

● Michael Casadevall, also known as FOSSFirefighter, or NCommander
● Fellow for ICANN63 and ICANN65

○ Member of the New GTLD Subsequent Procedures Policy Development Process
○ Interest in DNSSEC, IDNs, EAI, and other security and accessibility issues

● Alumni of Canonical for six years developing Ubuntu Linux
● Experienced with WebPKI, DNSSEC, and attacks on these protocols
● Independent Freelancer and Researcher
● Twitter: https://twitter.com/FOSSfirefighter
● GitHub: http://github.com/NCommander
● IRC: NCommander on Freenode

https://twitter.com/FOSSfirefighter
http://github.com/NCommander

What is DNS?

What is DNS (Part 2)

● Short for Domain Name System
● It is core internet protocol, responsible in converting IP addresses to names

like google.com, twitter.com or defcon201.org
○ Without it, we’d be stuck remembering that 198.105.254.228 is the DC201 website

● DNS is a very old protocol, and used as part of ARPANET
○ Modern incarnation standardized in 1987, predating the birth of the modern internet.
○ Hierarchical in nature with all entries stemming from a root zone.
○ One of the first mostly of decentralized protocols on the Internet

● Used to publish information about Internet hosts

DNS Addresses Are Like Phone Numbers

● Let’s take a typical phone number and break it down: +1-201-555-1212
○ + (or 011) is the prefix, indicating the country this phone number is from. It’s typically omitted

unless dialing internationally
○ 1 is the country code, United States in this case
○ 201 is an area code, a geographical region within a country
○ 555 is the exchange area, subdividing area codes into various blocks
○ 1212 is the subscribe number

● DNS Addresses work the same way, let’s look.

Anatomy of a DNS Address

● Let’s take an example DNS name: dns-talk.defcon201.org.
○ DNS addresses are processed right to left, starting with the period. Like +, it’s typically omitted
○ . represents the Internet Root Zone, the basis of DNS and the effective core of the Internet.
○ org is a Top-Level Domain, one of hundreds that group and organize names within the domain

name system
○ defcon201nj is a second level domain, representing a single site within org
○ dns-talk is a third level domain, representing a sub-site within defcon201

● The DNS system is hierarchical, and works through a system of delegation;
there is no centralized database of all domain names throughout the world.

● We’ll look at the delegation system later in this presentation.

Example Zone File
$TTL 3600
$ORIGIN com.
example IN SOA ns1.example.com. example.com. (
 2018082601 ; Serial
 5M ; Refresh
 4H ; Retry
 4W ; Expire
 30M ; default_ttl
)
 NS ns1.example.com.

 A 128.66.0.1
 AAAA 2001:db8::f03c:91ff:febb:64e9
 TXT "v=spf1 a mx ptr ip4:128.66.0.1 ip6:2001:db8::f03c:91ff:febb:64e9 -all"
 MX 0 mail.example.com.

Common Types of DNS Records

● SOA
○ Statement of Authority
○ Information about the authoritative data within zone as a whole

● A
○ Represents a name to number translation for IPv4

● AAAA
○ Pronounced quad-A, represents a name to number translation for IPv6

● MX
○ Mail e(X)change, what systems process incoming mail for this domain name

● TXT
○ TeXT record, arbitrary data used by some applications such as SPF

Common Types of DNS Records

● CNAME
○ Canonical NAME - An alias to an A record

● NS
○ Name Server - What nameservers control this zone

● PTR
○ Pointer - Maps a name to an IP address for reverse look up (think *69)

● CAA
○ Certificate Authority Authorization - What CAs are allowed to sign for this domain

DNS Lookups In Practice

DNS lookups work through a system of delegation, starting from the root zone,
and a network of interconnected NS records. The easiest way to show this in
practice is to show a zone lookup from the root zone.

First, we’ll show getting the A record for defcon201.org from Cloudflare’s 1.1.1.1
resolver directly.

Then we’ll show how it derived that answer from Internet Root Zone, request the
NS record for org, and follow the chain until we get the A records for
defcon201.org

Querying CloudFlare for the A record
$ dig @1.1.1.1 defcon201.org IN A +noall +answer
; <<>> DiG 9.11.3-1ubuntu1.2-Ubuntu <<>> @1.1.1.1 defcon201.org IN A +noall +answer
; (1 server found)
;; global options: +cmd
defcon201.org. 3600 IN A 138.197.87.22

Querying The Root Zone
$ dig @a.root-servers.net org NS IN +noall +authority

; <<>> DiG 9.11.3-1ubuntu1.2-Ubuntu <<>> @a.root-servers.net org NS IN +noall +authority
; (2 servers found)
;; global options: +cmd
org. 172800 IN NS d0.org.afilias-nst.org.
org. 172800 IN NS a0.org.afilias-nst.info.
org. 172800 IN NS c0.org.afilias-nst.info.
org. 172800 IN NS a2.org.afilias-nst.info.
org. 172800 IN NS b0.org.afilias-nst.org.
org. 172800 IN NS b2.org.afilias-nst.org.

Querying org.
$ dig @d0.org.afilias-nst.org. defcon201.org IN NS +noall +authority

; <<>> DiG 9.11.3-1ubuntu1.2-Ubuntu <<>> @d0.org.afilias-nst.org. defcon201.org IN NS
+noall +authority
; (2 servers found)
;; global options: +cmd
defcon201.org. 86400 IN NS dns1.registrar-servers.com.
defcon201.org. 86400 IN NS dns2.registrar-servers.com.

Querying defcon201.org’s A record
$ dig @dns1.registrar-servers.com. defcon201.org IN A +noall +answer

; <<>> DiG 9.11.3-1ubuntu1.2-Ubuntu <<>> @dns1.registrar-servers.com. defcon201.org IN A
+noall +answer
; (2 servers found)
;; global options: +cmd
defcon201.org. 3600 IN A 138.197.87.22

An Insecure Distributed Information Database

As that example shows, DNS is both vast and distributed. It’s also lacking one
notable feature out of the box: integrity and security.

It’s possible for any server to monitor DNS traffic and see what websites you’re
visiting, even in light of use of secure sockets.

Furthermore, any DNS server can simply lie, and return bogus information. Many
ISPs such as Spectrum do this and return “search results” in cases where
NXDOMAIN should have been sent. This wrecks havoc with software that expects
proper operation of their DNS software.

DNS Hijacking

Because DNS data is neither encrypted nor authenticated by the end-user
(DNSSEC does NOT fix this), it is trivially easy to subvert DNS queries and return
invalid information. Furthermore, as standard DNS operates over UDP, it’s also
possible to perform packet injection and simply return wrong information.

The two most common ways of subverting DNS traffic is a man-in-the-middle
attack, and by DNS cache poisoning. We’ll covering both of these.

Cache Poisoning

To reduce load on the DNS system, records are cached by recursive resolvers for a
period known as the Time-To-Live, which is set globally in the SOA record, or on a
per record basis.

If an attacker can manipulate responses from upstream DNS servers (via BGP
hijack, packet injection, etc), they can cause the recursive resolver to cache invalid
data, and redirect clients to another DNS target.

DNSSEC was designed primarily to help combat cache poisoning attacks by
making DNS records authenticatable.

DNSSEC Doesn’t Actually Help

DNSSEC unfortunately suffers from a few fatal flaws. In the context of preventing
caching attacks, low deployment on the global Internet means most targets are
hijackable without any additional effort.

Even when DNSSEC is deployed, it’s prone to both stripping and denial-of-service
attacks; DNSSEC records are typically too big to include in DNS-over-UDP; by
forcing TCP resets, a recursive resolver can be forced to downgrade to UDP and
not get signed record information.

It Gets Worse

DNSSEC itself is also prone to stripping attacks; there is no standard that
indicates a DNS record should be or must be signed. Although DNS resolvers can
assume the root zone is signed, an attacker can simply delete the DS and RRSIG
records in flight in they’re capable of doing a TCP/IP man-in-the-middle attack.

Furthermore, DNSSEC doesn’t cover NS delegation which can allow for
sidechannel attacks even without stripping DNSSEC data. Finally, and most
damning, DNSSEC doesn’t extend to the last mile; the client never sees signed
DNS records directly.

It’s entirely dependent on the recursive resolver.

DNS Man In The Middle

Furthermore, DNS is also trivial to subvert if an attacker can control the recursive
resolver or it’s upstream servers. In the United States, several ISPs such as Verizon
and Spectrum hijack NXDOMAIN DNS requests to return a “search results” page.

While this is relatively begin in of itself, ISPs can also use DNS to filter out
‘undesirable’ websites, or manipulate traffic at will with little hope of detection.
Since it’s possible to simply capture all traffic on port 53, ISPs can simply hijack all
outbound DNS requests even if a client attempts to use a third-party resolver.

Bringing Security To DNS

The first real efforts to bring security came in the form of DNSSEC, which adds the
ability to sign and secure records. DNSSEC is currently the most commonly
deployed security system, but it’s complex and doesn’t solve the problem with “the
last mile”.

As other DNS security measures are built ontop of DNSSEC, let’s take a moment to
look at review how it works.

Terminology

● KSK
○ Key Signing Key - this can be considered the master key to a given zone

● ZSK
○ Zone Signing Key - the key used to sign a zone; it’s use is optional but its signed by the KSK to

allow a level of PKI control within the DNSSEC ecosystem

● RRSet
○ Resource Record Set - The collective whole of a given type of resource records; i.e. all the A

records within a set

How It Works

DNSSEC works by forming a signed chain of trust from the Internet Root Zone to
each end point through a system of designated signers. The root zone was signed
in 2010, and most of the TLDs are now signed making real world deployment
possible.

DNSSEC was primarily implemented by adding new resource record type to DNS to
contained signed data and information.

DNSSEC RRTypes

● RRSIG
○ Resource Record Signature - A signed record of all the collected RRTypes

● DNSKEY
○ Holds the public key for the zone

● DS
○ Designated Signer - Holds the public key for the next zone in the delegation chain

● NSEC/NSEC3
○ Next Secure Record (v3), affirms that a domain doesn’t exist by signed reply

Chain of Trust

Trust is established from the root zone via a hardcoded KSK (which was recently
rolled over). This forms the basis of the DNSSEC system.

The root zone publishes it’s own DNSKEY record, and DS records of the top level
domains that are signed with their own private keys. This creates the first link in
the chain.

Second level domains, if signed, have their DS records added to their top level
domain, and the process repeats ad-infinitium. Let’s walk through a signed DNS
zone, soylentnews.org.

Root Zone DNSSEC
$ dig @a.root-servers.net org NS +noall +authority +answer +dnssec
org. 172800 IN NS a0.org.afilias-nst.info.
[...]
org. 86400 IN DS 9795 7 1 364DFAB3DAF254CAB477B5675B10766DDAA24982
org. 86400 IN DS 9795 7 2
3922B31B6F3A4EA92B19EB7B52120F031FD8E05FF0B03BAFCF9F891B FE7FF8E5
org. 86400 IN RRSIG DS 8 1 86400 20181129050000 20181116040000 2134 .
lDLXk7k2GrdgxKJR5bruqm0b0JTRShQzQaDCKs+uI8Kf8W99hinWrf3h
WMx28DlRRD1zcAhMK9+67xjTdjCMw1w+d4FIGpmDtBqDI3u22VAvM/h/
TW1Z6NnPEwrlIlgssT2QHDvFir4x/NPSNkgNtIMuy93hKqwdahY1as2N
XdTDAClgpfvHpSu1JqEeAR3/uBVMg0wuHlYWQmrFbBKONwLbfPFEspxf
GmWvRTBjoJRXmK5237lhOSt+0ifU+VMiy26RJgfpOFkhxs51ZgT9v4z2
CHDtFnFwtUf+GGAHjMK35VM0U2TFTBgs/AOArPOj4V7nDSIN7pXwYjhE QyYJOg==

Notice the difference

When asked for a DNSSEC response, in addition to the NS records, we got DS
records, and a RRSIG saying those DS records are signed, and can be verified
against the root zone KSK.

An important element is that NS records are not signed by design. The theory is
that you can verify the next level by comparing the DS record from the root zone to
the DNSKEY of the next zone.

Let’s continue walking the chain.

TLD Signed Response For soylentnews.org
$ dig @a0.org.afilias-nst.info soylentnews.org NS +noall +authority +answer +dnssec

soylentnews.org. 86400 IN NS ns1.linode.com.
[..]
soylentnews.org. 86400 IN DS 60615 8 2
3BC43E5A590598F993D563A3D66936283350FEB80F3C3693C40FCD8A FF1872AF
soylentnews.org. 86400 IN DS 64450 8 2
49245CF329C01E645C269582FFE73B4AAC8830AD6F6B3FE12B1616A7 63EB732A
soylentnews.org. 86400 IN RRSIG DS 7 2 86400 20181130152943 20181109142943
6368 org. A9vKMuJ9poUsIf02OkUXOvsdspUbyi7BiP6JHPm2oES+55opsbYFyquo
ZifHZU5t7YtScWlx9W7DYOj8xc6h7fJU9RL7OdvsJJt6L8bRLdQlVqEd
cng4hwXxp+9GPdQYvsf/l9VqStmnQS+2PaTdtnb+/cM+hpT5qfjyU/s/ sLw=

soylentnews.org signed A records
$ dig @ns1.linode.com soylentnews.org A +noall +authority +answer +dnssec

soylentnews.org. 300 IN A 23.239.29.31
soylentnews.org. 300 IN RRSIG A 8 2 300 20181204075551 20181104073513 60615
soylentnews.org. Q/WuvkQR/yTJciSAzblOFEvWOxQqQZ3468W0VJvFurcHkkOY01Zwb44D
/GZ7MfWcuEGWgq8l8al4QUL3kVWR2fg18/T7xQhX6+4Wnuj1ANQlAzTD
Fm4Y9g2AU/fmYgPC4P/3Wp+ouR1IQhlVbWNqS0IzIgZYVixidYvJoDPK
J4JqJN57ZZy8zV/G6S2SDQERywr3xF+8g1ujrz6JSLxCyEOs3C5+jVGB
/+U8N+IbYme0swM9ywnuuU5NR/JnKfSHBzMTYYjyeNFxmJQbC15M6/X6
ohD+as7Erm5ZfY8s54swJ9OW0E5foSX2lIrKZBX/4LdWcbwY2PvOX5VD AgwoXw==

Walking The Chain

Given all the records we’re interested in are signed and there’s a chain of trust from
the root zone to soylentnews.org, we can ask the ‘dig’ utility to walk the entire
chain for us and make sure all keys are verified and OK.

Chain Walking
mcasadevall@dawntreader:~$ dig @1.1.1.1 +sigchase +trusted-key=./root.keys soylentnews.org.
A +noall
;; RRset to chase:
soylentnews.org. 286 IN A 23.239.29.31

[...]
;; VERIFYING DS RRset for org. with DNSKEY:2134: success
;; OK We found DNSKEY (or more) to validate the RRset
;; Ok, find a Trusted Key in the DNSKEY RRset: 19036
;; Ok, find a Trusted Key in the DNSKEY RRset: 20326
;; VERIFYING DNSKEY RRset for . with DNSKEY:20326: success

;; Ok this DNSKEY is a Trusted Key, DNSSEC validation is ok: SUCCESS

What DNSSEC Provides

In short, DNSSEC provides a way to get authoritative signed information for DNS
records, knowing that they’re both valid and have not been tampered with.

It also provides a mechanism of knowing who controls what and potentially
detecting any record tampering; it’s impossible to send invalid RRSIG records
unless an attack has the private keys.

However, it is a system with flaws.

Flaws in DNSSEC

● DNSSEC first requires that all domains manually sign their zones, and
maintain up-to-date KSKs with their registrars. This is non-trivial and has
greatly slowed deployment of DNSSEC on the public internet.

● DNSSEC records are too big to send in a single UDP packet; TCP connections
must be used to download the records which have a high setup/teardown
cost compared to regular DNS

● Information is still sent in the clear, an attacker can see what is being queried
even if they can’t tamper it, a form of information leakage.

● It gets worse.

The Last Mile

● Doing signature validation requires walking the chain and contacting multiple
servers in series to find if DNSSEC record data is good or bad. This is not a
fast process, and can fail if a given nameserver is down or overloaded.

● DNSSEC is prone to stripping attacks; there’s nothing mandating that a zone
is supposed to be signed.

● Because of the amount of traffic, client resolvers built into Windows and Linux
do not download DNSSEC data directly. They’re dependent on the recursive
resolver on their router or their ISP to validate DNSSEC data on their behalf.
This is sent to the client as a single bit flag.

In Short

DNSSEC provides authentication for zones that have been signed, but clients do
not (and may not be able to) check the zone data if DNS traffic is being tampered
with.

It also provides no mechanism to prevent stripping attacks, or anything to protect
the last mile from malicious data.

In short, while it is a sufficient base to prove data is correct, it’s not good enough.

Fortunately, there has been some work to rectify part of this.

DNS-over-TLS (DoT)

One of two new technologies is wrapping the existing DNS protocol around TLS.
TLS is normally used to encrypt websites and is used by every website that shows
a green “Secure” lock in major web browsers.

DNS-over-TLS provides the ability to encrypt the last mile of DNS to the recursive
DNS resolver. This however presents two problems

● Many corporate firewalls block non HTTP/HTTPS traffic
● DoT still relies on the standard DNS behavior of trusting the upstream server

to do DNSSEC validation.

DNS-over-HTTPS (DoH)

In an effort to at least allow (more) secure DNS to work in virtually any
environment, efforts have been made to allow DNS to work as a subprotocol with
HTTPS; this would allow secure DNS in any situation where only basic web access
is available.

Both DoT and DoH are available today from several public providers such as
Cloudflare, and available in major DNS software. However, there are still major
problems to be solved.

Both These Protocols Are Flawed

DNS-over-TLS ties in the complex world of WebPKI and certificates to DNS. While
it does prevent passive whistleblowing, realities of WebPKI prevent DoT from
being affective as it can be

First off, it’s impossible to get certificates for RFC1918 space, meaning any
DoT-enabled resolver must have a public IP address to get a cert or use a local CA.
In general, this means many users will likely only be able to use public resolvers
over the Internet.

DoT Flaws (Continued)

Furthermore, DoT has a bootstrapping issue; it’s (generally) impossible to check
the revocation status of a certificate without a DNS lookup. This also inherts all
the flaws and problems of TLS revocation. In theory, OCSP stapling could be used,
but it’s unclear if any DoT client/server implements support for this today.

Secondly, DoT doesn’t solve issues relating to cache poisoning or the recursive
resolver flat out lying to clients. As it is simply DNS over TLS, DNSSEC data is not
transmitted to the client for validation. As such it provides no additional
authentication or security than standard DNS.

DoH Adds More Issues

In addition to the issues with DNS-over-TLS, DNS-over-HTTPS also brings it’s own
set of issues. It suffers from all the flaws previously described, and introduces a
new one; specifically, it allows JavaScript code in the web browser to execute
arbierty DNS lookups.

This can be used as a type of hard-to-detect tracking token, or could even be used
to probe internal networks should said networks be running a DoH service.

In short, DoH/DoT don’t actually help add any realistic security to DNS data.

Other Open Issues

As previously mentioned, the fact is there is no standard method of specifying if
DNSSEC information should be available for a given domain. The creation of an
equivalent to HSTS for DNS would help solve this issue but shares the same risks
of trust on first use.

Secondly, no operating system today gathers and collects DNSSEC data directly
over any protocol. There have been efforts to create “stapled DNSSEC” to TLS, but
this work has currently stalled in drafting.

Open Issues

Finally, both DoT and DoH still do server side validation of DNS records. This
means that your DNS provider can silently change these records if they so choose.

In other words, while DNSSEC provides authentication, and DoT/DoH provide
security, you don’t have both at the same time, but it is possible to work around
that.

Client-Side Validation of DNSSEC

It is possible today to run a local DNS resolver that will handle retrieving RRSIG
records. One such package is dnssec-trigger
(https://www.nlnetlabs.nl/projects/dnssec-trigger/about/), available for Windows,
Mac, and Linux

dnssec-trigger will download RRSIG records, run the validation and ensure known
good results. Although it is still vulnerable to DNSSEC stripping attacks, it allows a
high degree of confidence that DNS data being retrieved is known to be good and
valid.

https://www.nlnetlabs.nl/projects/dnssec-trigger/about/

Conclusions

Despite being a core Internet protocol, DNS can not be trusted to provide accurate
information due to man in the middle attacks done by ISPs, as well as other forms
of tampering such as DNS cache poisoning.

DoH and DoT provide encryption and prevent eavsdropping but do not prevent
MitN attacks by DNS providers should they choose to provide them.

If you need secure DNS, your only option is to hope the servers you connect to
provide DNSSEC information, your resolvers do not strip said information and use
dnssec-trigger to validate it locally.

Studying DNS Hijacking - DNSCatcher

In an effort to understand the full scope of DNS hijacking on the public Internet, I
have started a project known as DNSCatcher
(https://github.com/NCommander/dnscatcher).

DNSCatcher is written in Ada and designed to run as a DNS server, and then do
A/B testing of data provided to it; for example, when given a request for
apple.com, it will check both the local resolver and a lookup from the root zone.

DNSCatcher Theory

The intended result of DNSCatcher is to note discrepancies between local DNS
data and what is be published in the root zone. Currently, Catcher is in early alpha
and only exists as proof of concept. I’m actively seeking funding to develop and
flesh it out further.

It is the intent of DNSCatcher to provide a standard API for cross-checking DNS
records from a client (or specialized tool like OONI Probe) to see if DNS data is
accurate and provide a detailed cross-section of DNS hijacking across the
Internet.

Currently Implemented Functionality

Currently DNSCatcher supports the full DNS protocol over UDP; with TCP support
being easy to add at this point; it cross-checked against a “known good” DNS
server and checks for discrepancies which are logged.

It is intended to add support for storing in a database and caching DNS records
properly as per TTLs to build comprehensive datasets of hijacking and where
hijacked records point to.

Catcher is MIT-licensed and is free and open source software. Contributions
welcome.

Questions

Contact Information

Email: michael@casadevall.pro

Twitter: @fossfirefighter

IRC: NCommander on Freenode

I’m available for consulting and contracting work on issues relating to security,
software development and more.

mailto:michael@casadevall.pro

